
MKA optimization for group CAs

Revision 1.0 January 18, 2025 Mick Seaman 1

MKA optimization for group CAs
Mick Seaman

MACsec Key Agreement (MKA, Clauses 9 through 12 of IEEE 802.1X-2020) explicitly
supports group connectivity. It provides a secure fully distributed multipoint-to-multipoint
transport and applications of that transport including distribution of data keys (SAKs) by
an elected Key Server. Each participant transmits and receives MKPDUs using a group
address, communicating with all the others and reducing the number of MKPDUs required
to add a new participant to an existing group. Each of the participants can cryptographically
validate MKPDUs transmitted by any of the others, supporting direct timely
communication to support (for example) early identification of an alternate Key Server and
(for another) delay bounding of transmitted data. However the Key Server distributes each
SAK, identifies the participants that are to use it and when they are ready to receive from
each of the others, and initiates data transmission protected by it. Participants other than the
Key Server can reduce the processing required to validate MKPDUs transmitted by others.
This note describes what can be done, points out some of the pitfalls, and notes related
performance optimizations.1 
________________________________________________________________________

1. Selective MKPDU validation
The abstract (above) introduces the basic idea—MKA
participants other than an elected or aspiring Key
Server can omit, or treat as lower priority, validation of
MKPDUs from participants other than the elected Key
Server.

The contents of MKPDUs are, very deliberately, not
confidentiality protected. This was initially done so
protocol operation, and any difficulty in the progress
of that operation, could be usefully observed by a
network administrator who did not possess the CAK.2
That avoided any need for a possibly vulnerable
management interface for key access. In the context of
this note, each MKPDU’s content can be inspected and
used to decide whether it should be validated.
MKPDUs can be retained for later validation (subject
to ageing out) if required.

2. Live and Potential Peers Lists
An attacker could send MKPDUs that would not pass
validation to disrupt MKA operation. Optimizing
validation reduces the load generated by reception of
those MKPDUs, but potentially confuses operation.
MIs (Member Identifiers) should only be added to a
participant’s Potential Peers or Live Peers List as a
consequence of receipt of an MKPDU that passes
validation. If the participant has validated only
MKPDUs recently (within MKA Life Time and MKA
Life Time plus MKA Hello Time, see 9.4.3 of
802.1X), then the only peer on its Live Peers List will

be the Key Server , and the only peers on its Potential
Peers List will be those received on the Live Peers List
of Key Server MKPDUs. A network administrator
needs to be aware of the reason for the absence of
other entries on the participants lists, and for this
reason if no other it would be advisable to standardize
the optimization if it is thought to be generally useful.
While it could be used without any change to protocol
fields, it might be wise to provide an indication of its
use in MKPDUs transmitted by a participant.

3. Duplicate MI detection
Each participant needs to check the content of
MKPDUs transmitted by other participants for
duplicate use of its own MI as specified in 9.4.2 of
802.1X. Before taking any action as a consequence of
apparent duplication, the MKPDU in question needs to
be validated.

4. Received SAs and replay protection
Unless extended packet numbering (XPN) is being
used, the MACsec nonce comprises an SCI (Secure
Channel Identifier, the transmitter’s MAC Address
followed by a port number) and a 32-bit packet
number (PN). The SCI is either encoded in the
SecTAG of each MACsec protected frame or derived
on receipt from the frame’s source MAC Address (9.3,
9.9, 14.1 of 802.1AE). Each received MACsec
protected frame carries an SAI (Secure Association
Identifier, comprising the SCI and a two-bit
Association Number, AN) used to identify and update

1 This note follows up on a brief discussion in the 802.1 Security Task Group, November 2024.
2 The secure Connectivity Association Key, either pre-shared/pre-place key (PSK) or a direct or indirect result of a prior authentication exchange,
demonstrated live possession of which is the token of prior authentication and authorization. See 6.2 of 802.1X for a description of the key hierarchy.



MKA optimization for group CAs

Revision 1.0 January 18, 2025 Mick Seaman 2

the lowest acceptable PN for the SA. Frames not
associated with a known SC/SA are discarded prior to
MACsec validation (if validation is required, see
validateFrames == Strict in Figure 10-4 of 802.1AE).3

The SCI of each peer is not included in MKPDUs
transmitted by the Key Server (both MAC Address
and port number components) of each peer is
available. The mapping between an MI, transmitted in
the Key Server’s Live Peer List, and the corresponding
peer’s SCI is available in MKPDUs transmitted by the
peer. There is no subsequent MACsec-protected frame
data integrity or confidentiality exposure in taking the
mapping from one of the latter MKPDUs without
validating it — if it was sent by an attacker that did not
in fact possess the SAK, any subsequent apparently
MACsec data frames sent by that attacker will not pass
validation. However such attacker-transmitted
MKPDUs with an MI duplicating that of a valid
participant but with a different SCI could be sent by an
attacker as part of an DoS attempt, where the attacking
system is not connected to the LAN in a way that
would allows it to simply interfere with transmission
from the valid participant. If a participant sees such a
duplicate MI use, it should validate the transmitted
MKPDUs before installing an associated SA.
NOTE—A received MACsec protected frame, sent by a CA
participant possessing the SAK, could be validated without
assigning it to an SA. So it would be possible create the SA, and to
assign an initial lowest acceptable PN value purely on the basis of
receiving the frame. The failure to follow the processing order
specified in 10.6 of 802.1AE could be considered harmless.
However it could also be impractical for hardware based MACsec
implementations.

5. MKPDU transmission and SAK 
distribution
The discussion so far suggests lowering the MKA
workload for non-Key Server participants by reducing
the effort they expend in MKPDU validation. That
effort might be considered (by some) excessive in two
general cases: (a) when a very large number of
participants are involved;4 and (b) when very rapid
CA 5 formation is desired after some more or less
synchronizing event, such as near but not exact power
cycling of the attached participants causing the loss of
prior {SAK, PN, MI, MN} state. This second case can
be addressed, with or without the need to use partial
MKPDU validation (as described above), by paying

attention to MKPDU transmission timing and the Key
Server’s choice of when to distribute SAKs.

5.1 Basic MKPDU exchanges
Figure 1 and Figure 2 illustrate simple MKPDU
exchanges for SAK distribution and installation
(notation from 9.17 of 802.1X).

Figure 1 begins with an MKPDU transmission, after
power up, from Key Server, K, to participant A. Since
K and A can complete power up at different times, it is
likely that a prior MKPDU has been lost. A first
MKPDU from A might also precede the sequence
shown, effectively prompting K to begin. The last
MKPDU, A+2, merely advertises A’s transmit and
receive status—its receipt is not a vital part of
enabling MACsec-protected communication.
Figure 2 shows a continuation of the dialogue, with a
third participant, B, joining. MKPDUs transmitted by
B that A does not have to validate (but can validate
with lower priority) are shown as dashed arrows. The
addition of B to the CA forces (9.8 of 802.1X) the
distribution of a fresh SAK (K+2). A has to receive,
and validate, two MKPDUs from K—one with the
fresh SAK, and one indicating that K has started
transmitting use that SAK, so A can also proceed with
transmission using that SAK (transition from
CP:READY to CP:TRANSMIT in Figure 12-2 of
802.1X). After the first of these, A transmits an
MKPDU when it has installed SAK K+2 for reception,
allowing K to transmit the second, coordinating the
lossless rollover from K+1 to K+2.

3 Other settings of the management variable ‘validateFrames’ allow validation to be skipped, with or without SecTAG and ICV removal, or forwarding of
invalid frames. These settings were more relevant prior to MKA standardization, anticipating potential issues with non-standard key agreement protocols and
wishing to avoid mandating combined MACsec/MAC implementations which could prove unusable if those protocols failed.
4 The current limit as to the possible number of participants is effectively determined by the inclusion of each of their Member Identifier.Member Number
(MI.MN) tuples in one or other of the Live or Potential Peers Lists. At 16 octets per peer, that works out to a little less than 100 participants in a CA (secure
Connectivity Association). If each transmits at MKA Hello Time (2.0 seconds, Table 9-3 of 802.1X) that implies a constant validation rate of about 50
MKPDUs/second. Note that I do not intend to imply that sharing SAKs amongst such a large group is a good idea.
5 In this context CA stands for secure Connectivity Association, created by the use of MACsec over the insecure Connectivity Association created simply by
attaching end stations to the same (possibly bridged) LAN media.

Figure 1-1—Initial SAK Distribution

Figure 1—Initial SAK Distribution

K A
K+1:::

A+1::K+1:

K+2:A+1::{SAK}K+1, K+1.0.rt
Install 
K+1

A+2:K+2::K+1.0.rt Data tx 
with SAK
K+1



MKA optimization for group CAs

Revision 1.0 January 18, 2025 Mick Seaman 3

If the addition of participants to a CA is spread over
time, the pattern of communication for existing
participants on each addition will follow that of A in
Figure 2. Each receives a new SAK, installs it and
responds, receives the go ahead to transmit, and
reports its status. The last of these need not be prompt,
but can occur as part of periodic transmission. The
MKPDUs transmitted by the Key Server are multicast,
not per participant, so each participant addition results
in just one MKPDU from each of the existing
participants (reporting key installation).

The timing of fresh SAK distribution is restricted by
item c) in 9.8 of 802.1X — a fresh SAK can be
distributed if MKA Life Time (2.0 second) has elapsed
since the prior SAK was first distributed, or if the Key
Server’s Potential Peer List is empty. If new
participant arrivals occur at intervals that are shorter
than the minimum between the Key Server’s attempts
to distribute SAKs, they will result in the distribution
of a single fresh SAK after they have all be added to
the Key Server’s Live List. The Key Server cannot, of
course, distribute fresh SAKs faster that it can install
them itself. However there is no requirement in 9.8 for
the Key Server to wait until all Live List participants
have reported successful installation of a given SAK
before distributing a fresh SAK as such a requirement
would not cope with the possibility of participant
failure.

If distribution of a fresh SAK does address the arrival
of several new participants, as in the immediately prior
paragraph, then it might be distributed and brought

into service with as few as two MKPDU transmissions
per new participant, one from each of the existing
participants, and two from the Key Server. The
operative word here is ‘might’, as the first MKPDU
from each new participant needs to include a recent
MI.MN for K in its Potential Peer list. That could be
obtained from an MKPDU with a non-null Live List
transmitted by an existing participant, after validating
that MKPDU.

5.2 Rapid Group CA formation
As noted above rapid installation of SAKs by all the
intended CA participants can benefit from appropriate
SAK distribution timing. In particular, if the challenge
is that their availability is likely to be roughly but not
exactly synchronized by power supply availability it
helps if the Key Server has some idea of the target
time for full CA operation and:

a) The maximum expected time between Key Server
availability and the last participant becoming
available; or

b) The expected number of participants for viable
system operation following establishment of secure
connectivity; or

c) The identity (MAC Address) of each of the
essential participants.

With the last of these being obviously the most useful.

5.2.1 Detecting new participants

An important factor in the overall delay from initial
Key Server availability is when each of the other
participants receives an acceptable (for subsequent
liveness proof) Key Server MI.MN. This can be
reduced by rapid repeated Key Server MKPDU
transmission, either consistently through the start up
phase, or in response to an initial transmission from
each would be participant. One approach, not
addressed in the standard but not requiring any change
to the contents of transmitted MKPDUs, is for the Key
Server to poll by repeating exactly the same MKPDU
with unchanged MI.MN. Provided the overall repeat
time is short, this should not significantly reduce the
Key Server’s ability to timeout inactive participants.
However other participants should avoid unnecessary
processing of MKPDUs from the Key Server or any
other participant (as identified the transmitter MI) by
only validating those whose MN is greater than that
last processed or awaiting processing. Since each
MKPDU reflects the current state of its transmitter
(and not just one of a succession of commands)
information from the last is all that is required.

Figure 1-2—Follow up SAK Distribution

Figure 2—Follow up SAK Distribution

K A
Data tx 
with SAK
K+1

B+1:::
K+3:A+2:B+1:K+1.0.

rt

B

B+2:K+3::

K+4:A+2, B+2::{SAK}K+2, K+1.0.rt,K+2.1.r

A+3:K+4, B+2::K+1.0.rt,K+4.r

K+5:A+2, B+2::{SAK}K+2, K+1.0.rt,K+2.1.rt

A+4:K+5, B+2::K+1.0.rt,K+4.rt

Install 
K+2

Data tx 
with SAK
K+2



MKA optimization for group CAs

Revision 1.0 January 18, 2025 Mick Seaman 4

5.2.2 Continued SAK Distribution
A fresh SAK is distributed whenever the Key Server’s
Live List changes (9.8 of 802.1X). This provides a
Cipher Suite independent defence against nonce
reuse—a participant that resets, forgetting its prior PN
use and restarting its PN sequence with the next SAK
it receives, is also obliged to forget its prior MI.6,7

When one of the current non-XPN Cipher Suites is
being uses, the SCI (a concatenation of each
participant’s MAC Address and port number)8 divides
the nonce space between participants. So the rule
forcing fresh SAK distribution could be relaxed for
Key Servers that retain a complete record of {MI,SCI}
tuples for the SAK currently being distributed: new
participants need only force fresh SAK distribution
only if their SCI was previously used with a different
MI. That should lessen the load for participants that
have already installed a current SAK. Additionally
such an existing participant need only validate and
respond once a second or so to a stream of successive
MKPDUs from the same Key Server that only serve to
convey the SAK to new participants. Those periodic
responses will suffice to retain its presence on the Key
Servers Live List. 
While this (5.2.2) optimization does not involve any
change or addition to the existing MKPDU format and
TLVs, it should be subject to the scrutiny and
documentation that comes with
standardization—verifying that it does indeed address
a real need not met by the existing standard or
optimizations previously described, that envisaged use
cases do not require fresh SAKs for other reasons, and
ensuring that it not used with any competing
optimizations that might also be thought to be possible
with the existing MKPDU specification.

A. Additional background and notes
t.b.s.

6 The reset participant (A, say) will only accept an SAK from a Key Server (K) when its (A’s) new MI has appeared on the K’s Live List, which will have
caused K to distribute a fresh SAK. K cannot reliably track and update A’s PN use, as [in the threat model, a) in 9.1 of 802.1X] the attacker could have
selectively limited the propagation of A’s frames.
7 A further use case specific consideration concerns possible theft of a participant system and extraction of the SAK. While the CAK and its derived keys that
are used to protect and validate MKPDUs might be retained within a secure boundary in the system, it is most unlikely that such precautions could be applied
to use of the SAK. There is no suggestion that SAK changes provide perfect forward secrecy (PFS), but it could raise the cost of some attacks.
8 In most cases each port (physical MAC entity) will have its own MAC Address, so the port number component will not play a significant role.


	MKA optimization for group CAs
	1. Selective MKPDU validation
	2. Live and Potential Peers Lists
	3. Duplicate MI detection
	4. Received SAs and replay protection
	5. MKPDU transmission and SAK distribution
	5.1 Basic MKPDU exchanges
	5.2 Rapid Group CA formation
	5.2.1 Detecting new participants
	5.2.2 Continued SAK Distribution



