
March 1994 DOC: IEEE P802.11-94/22

IEEE 802.11
Wireless LAN Medium Access Control and Physical Layer Specifications

Abstract

The RT Data Confidentiality Algorithm

7 March1994

Kerry Lynn
Apple Computer, Inc.

One Infinite Loop, MS 301·4J
Cupertino, CA 95014

email: lynn@applelink.apple.com

This submission proposes that a standard data confidentiality algorithm be implemented in all
802.11 stations that provide security services. A candidate algorithm is described which exhibits
adequate security and efficiency, is self-synchronizing, and has been approved for export under
jurisdiction of the US Department of Commerce.

Issues Addressed

6.6 Is there any additional work on Security that needs to be done by 802.11 in addition to
the work that is done by 802.1O?

6.10 Shall the minimal Security algorithms set be extended to include a Privacy equivalent to
wiredLANs?

Introduction

With the decision to incorporate 802. lOb Secure Data Exchange in the 802.11 standard, we have
provided a mechanism that allows cooperating stations to communicate in a secure fashion.
However, 802.lOb does not afford any security in and of itself; it is up to 802.11 to determine
which security services are required on the wireless data link and to specify implementations.

A recent submission from ETSI [1] defines "security comparable to that of a wired LAN" as at
least protecting authorized users of a wireless LAN from casual eavesdropping and data

Submission page 10f9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

injection. The first of these LAN security threats is formally known as unauthorized disclosure
and can be protectected against by the use of a data confidentiality (privacy) service [2]. The
second issue is more complex and requires the addition of an integrity service.

Eavesdropping is a familiar problem to users of other wireless technologies. For example, many
corporations have policies that prohibit employees from discussing confidential business over
cellular telephones. Apple believes that by including a basic data confidentiality service in the
802.11 standard, a significant barrier to market penetration can be eliminated.

Data confidentiality depends on 1) an external key management service to authenticate users and
distribute data enciphering/deciphering keys, and 2) an appropriate confidentiality algorithm.
While the security of the cryptosystem may by reduced by a poor choice for either of these
components, they are complementary functions and may be considered independently. This
submission focuses on a confidentiality algorithm (RT) and proposes that it be included as a
basic feature in all 802.11 stations that provide security services.

Theory of Operation

The process of disguising (binary) data in order to hide its information content is called en­
cryption or encipherment [3]. Data that is not enciphered is called plaintext (denoted by P) and
data that is enciphered is called ciphertext (denoted by C). The process of turning ciphertext
back into plaintext is called decryption or decipherment. A cryptographic algorithm, or
cipher, is a mathematical function used for enciphering or deciphering data. Modern crypto­
graphic algorithms use a key (denoted by k) to modify their output. The encryption function E
operates on P to produce C:

In the reverse process, the decryption function D operates on C to produce P:

Di.C) = P

As illustrated in Figure 1, note that if the same key is used for encryption and decryption then

Plaintext

Submission

DkfEkfP)) = P

Secure Side Channel

Original
Plaintext

'----. Eavesdropper

page 2 of9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

Figure 1. A Confidential Data Channel

The algorithm proposed in this submission is a form of electronic codebook in which a block of
plaintext is bitwise XOR'd with a pseudorandom key sequence of equal length. The key
sequence is generated by the proprietary RC4 algorithm licensed from RSA Data Security, Inc.

IV
Initialization r
Vector (IV) -4 Seed PRNG

(RC4) Secret Key -.

Plaintext

<£) 1------1~

~ Ciphertext

ICV
Integrity Check Value (ICV)

Integrity Algorithm t------=---.;.-----"'----'--.... I
'-----'

Message

Figure 2. RT Encipherment Block Diagram

Referring to Figure 2 and following from left to right, encipherment begins with a secret key that
has been distributed to cooperating stations by an external key management service. RT is a
symmetric algorithm in which the same key is used for encipherment and decipherment.

The secret key is combined with an initialization vector (IV) and the resulting seed is input to a
pseudorandom number generator (PRNG). The PRNG outputs a key sequence k of pseudo­
random bits equal in length to the largest possible MSDU. Two processes are applied to the
plaintext MSDU. To protect against unauthorized data modification, an integrity algorithm
operates on P to produce an integrity check value (ICV). Encipherment is then accomplished
by mathematically combining the key sequence with P. The output of the process is a message
containing the resulting ciphertext, the IV, and the ICV.

The PRNG is the critical component of this system, since it transforms a relatively short secret
key into an arbitrarily long key sequence. This greatly simplifies the task of key distribution as
only the secret key needs to be communicated between stations. The IV extends the useful
lifetime of the secret key and provides the self-syncronous property of the algorithm. The secret
key remains constant while the IV changes periodically. Each new IV results in a new seed and
key sequence, thus there is a one-to-one correspondence between the IV and k. The IV may be
changed as frequently as every MSDU and, since it travels with the message, the receiver will
always be able to decipher any message. The IV may transmitted in the clear since it does not
provide an attacker with any information about the secret key.

As stated previously, RT combines k with P using bitwise XOR; this combination step is much
less complex than generating the key sequence. In a software implementation, the key sequence

Submission page 3 of9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

may be cached so that it can be used to encipher more than one plaintext MSDD. In this way, the
"cost" of computing the key sequence may be spread over several MSDUs although this lessens
the security somewhat due to the reuse of k.

Seed

Secret Key ~G PRNG liB ---..
(RC4)

+
IV[1] Key Sequence [1]

Key
Sequence

IV IV[n] Key Sequence [n] -
Plaintext

Cache liB -
Ciphertext

'---

Integrity Algorithm

ICV
ICV' = ICV?

Message

Figure 3. RT Decipherment Block Diagram

Referring to Figure 3 and following from left to right, decipherment begins with the arrival of a
message. The IV of the incoming message may be used to search an optional cache of <IV, key
sequence> pairs; if the IV is found then the corresponding key sequence has already been
generated and the algorithm proceeds to the combination step. If the IV was not located, the key
sequence necessary to decipher the incoming message is generated and (optionally) stored in the
cache for future use. Combining the ciphertext with the proper key sequence yeilds the original
plaintext. If desired, this may be verified by performing the integrity algorithm on the recovered
plaintext and comparing the output ICV' to the ICV transmitted with the message.

Properties of the Algorithm

RT should be evaluated against the desired properties of a MAC layer confidentiality algorithm
as discussed in issue 6.10:

Strong: The security afforded by the algorithm should rely on the difficulty of discovering the
secret key through a brute-force attack. This in turn is related to the length of the secret key
(usually expressed in bits) and the frequency of changing keys. However, it may be an easier
problem to discover k through statistical methods if the key sequence remains fixed and

Submission page 4 of9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

significant quantities of ciphertext are available to the attacker. RT avoids this by frequently
changing the IV and hence k.

It should be noted that the goal of RT is to provide the minimum acceptable level of security.
Additional security may be provided by higher layer protocols.

Self Synchronizing: Provided by the IV, as described. This property is critical for a data-link
level privacy algorithm, where "best effort" delivery is assumed and packet loss rates can be
high. An algorithm that assumes reliable delivery between sender and receiver in order to
maintain synchronization of crypto-variables cannot provide acceptable performance.

Efficient: RT is efficient in two ways: it is based on a stream cipher that is extremely efficeient
even in software implementation, and it is unique in that the "cost" of the most computationally
intensive part of the algorithm may be amortized over several packets.

Exportablellmportable: While Apple has obtained an export license for the described algorithm,
this is unfortunately not a guarantee that all parties will be granted a license. Nevertheless, there
are two things that suggest this will be the case: the precedent has been set, and the algorithm
strictly conforms to the agreement worked out between the State Department and the Software
Publisher's Association. A copy of "Procedure for Submitting a Commodity Jurisdiction Request
for a Mass Market Software Product that Contains Encryption" may be obtained by writing to:

United States Department of State
Department of Politico-Military Affairs
Office of Defense Trade Controls
Washington, D.C. 20522-0602

Licensable:

Itellectual Property Statements

" Elements of this proposal may be protected by one or more issued or pending patents owned by
Apple Computer, Inc. In the event that this proposal is adopted into the IEEE 802.11 Standard,
and the Standard cannot be practiced without the use of such patent(s), Apple agrees upon
request to grant a non-exclusive license under such patent(s) on a nondiscriminatory basis and on
reasonable terms and conditions, provided a similar grant under licensee's patents within the
scope of the license granted to licensee is made available upon request to Apple."

"Elements of this proposal are trade secrets of RSA Data Security, Inc. In the event that this
proposal is adopted into the IEEE 802.11 Standard, RSA agrees upon request to grant a non­
exclusive license to its technology on a nondiscriminatory basis and on reasonable terms and
conditions. "

A license for the RT algorithm may be obtained by contacting:

RSA Data Security, Inc.

Submission page 5 of9 _ Apple Computer, Inc.

March 1994

100 Marine Parkway
Redwood City, CA 94065

Conclusion

DOC: IEEE P802.11-94/22

It is unlikely that a large corporate customer considering a volume purchase of 802.11 RF LAN
adapters would do so with the knowledge that they would be vulnerable to unauthorized LAN
access or disclosure of sensitive information. It is also unlikely that they would be willing to
retrofit security services into their existing wired infrastructure. The solution is to provide
security services at the point of vulnerability - the wireless data link. It follows that in order to
achieve interoperability in a secure environment, one or more algorithms must be shared by all
stations that support security services. This submission proposes a canditate algorithm that
strikes a balance between the conflicting contstraints of strength, efficiency, and exportability.

Submission page 60f9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

Appendix A: Implementation Specification

This section gives a pseudo-code description of the implementation that conforms to the 802.10
approach adopted by the committee. This section should be included in the IEEE 802.11
Specification as an aid to interoperability.

/* D E FIN E S */

#define KEY_SZ 8
#define MAX_MSG_SZ 1500

typedef unsigned char uchar;
typedef uchar Key[KEY_SZ];
typedef uchar Sequence [MAX_MSG_SZ] ;
typedef struct Message {

Key iv;
Sequence data;

Message;

/* COM M 0 N

/ *

V A R I A B L E S */

* The global variable 'secret_key' is set by a station management function
* as a result of an authenticated key distribution operation. The receiving
* station must also have it before any secure messages can be exchanged.
*/

extern Key secret_key;

/* T X V A R I A B L E S */

/*
* The (non-negative) global variable 'max-pkts-per_iv' is set by a station
* management function according to policy. If it is low, security and
* overhead are increased. If it is high, security and overhead are
* decreased.
*/

extern int max-pkts-per_iv;

Message outgoing; /* contains the secure tx message

static int initialized 0; /* non-zero iff following params init'd
static int pkt_count; /* number of packets sent with current
static Key tx_iv; /* transmit initialization vector
static Key tx_seed; /* seed to PRN generator
static Sequence tx_key_seq; /* transmit pseudorandom key sequence

/* R X V A R I A B L E S */

/*
* Rx has separate variables, since rx and tx are concurrent processes
*/

static Key rx_iv;
static Key rx_seed;
static Sequence rx_key_seq;

static Message cache_entry;

/*

/* receive initialization vector
/* seed to PRN generator
/* receive pseudorandom key sequence

*/

*/
iv */

*/
*/
*/

*/
*/
*/

Submission page 7 of9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

*
*
*
*
*
*/

The receiving station keeps a cache of recently seen <iv, sequence>
tuples. If the iv of an incoming message matches an entry in the
cache, the corresponding PRN sequence has already been generated.
All that need be done to decrypt the ciphertext is an relatively
inexpensive Combine() operation.

static Message *Cache;

/* COM M 0 N FUN C T ION S */

/*
*
*
*
*/

'NewIV' generates a pseudorandom initialization vector and stores it in
'iv'. Ideally, each iv is randomly and uniformly distributed across the
range of possible values.

extern void NewIV(Key *iv);

/*

*
*
*
*/

'NewSequence' generates a maximum MSDU length pseudorandom sequence and
stores it in 'buffer'. Ideally, each unique 'seed' results in a unique
sequence without cycles, etc.

extern void NewSequence(Key *seed, Sequence *buffer);

/*

*
*
*
*
*/

'Combine' mathematically combines 'objectl' and 'object2' storing the
result in 'object3'. 'objectSz' is the length of the objects in bytes.
Ideally, the cost of this operation is much less than generating a new
key sequence. In this example, the operation is a bitwise XOR.

static void
Combine(uchar *objectl, uchar *object2, uchar *object3, int objectSz)
{

int i;

for (i = Oi i < objectSzi i++)
object3[i] = objectl[i] A object2[i];

}

/* T X FUN C T ION S */

/*
*
*
*/

'InitVars' sets up the local parameters required to generate a secure
message.

static void
InitVars ()
{

/*
*
*
*
*
*/

void

pkt_count = 0;
NewIV(&tx_iv) ;
Combine (secret_key, tx_iv, tx_seed, KEY_SZ);
NewSequence(&tx_seed, &tx_key_seq);

'SendMessage' generates a secure message. The result is placed in the
global parameter 'outgoing'. Note that as a side effect this function
generates a new key sequence at the rate defined by the global variable
'max-pkts-per_iv' .

SendMessage(uchar *plaintext, int dataSz)
{

Submission page 8 of9 _ Apple Computer, Inc.

March 1994 DOC: IEEE P802.11-94/22

if (initialized == 0 I I pkt_count > max-pkts-per_ iv) {
InitVars() ;
initialized = 1;

}
memcpy(outgoing.iv, tx_iv, KEY_SZ);
Combine (tx_key_seq, plaintext, outgoing.data, dataSz);

}

/* R X FUN C T ION S */

/*
* 'GetCache' searches the receiving station's cache for an entry matching
* the input 'message. iv' . Iff the entry is found, the return value is
* non-zero and the corresponding PRN sequence is returned in 'message.data'.
*/

extern int
GetCache(Message *message);

/*
* 'SetCache' enters a new <iv, sequence> tuple into the receiving station's
* cache.
*/

extern void
SetCache(Message *message);

/*
This function sets up the local parameters required to decrypt a secure
message.

*/
static void
NewEntry(Message *cache_entry)
{

Key seed; /* seed to PRN generator */

Combine (secret_key, (uchar *) cache_entry->iv, seed, KEY_SZ);
NewSequence(&seed, (Sequence *) cache_entry->data);

/*

*/
void

This function decrypts a secure message.

RecvMessage(Message * incoming , int dataSz)
{

/* use the incoming message iv as key for the cache search */
memcpy(cache_entry.iv, incoming->iv, KEY_SZ);
if (GetCache(&cache_entry) == 0) {

}

NewEntry(&cache_entry) ;
SetCache(&cache_entry) ;

/* combine the PRN sequence with the data, decrypting it in place */
Combine (cache_entry. data, incoming->data, incoming->data, dataSz);

References
[1] IEEE P802.11-94/9, "Radio Equipment and Systems (RES); HIPERLAN Security

Information (input for STAG)", 14 December 1993
[2] IEEE Std 802.10-1992, "Interoperable LANIMAN Security (SILS), 5 February 1993
[3] W. Ford, Computer Communications Security, Prentice-Hall, 1994

Submission page 9 of9 _ Apple Computer, Inc.

,

I

