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Abstract

This submission examines various proposed modulations using linear algebraic concepts.
This is possible because the proposed modulations can be viewed as vector transmissions.
Vector transmissions have been embraced as a way to meet the FCC’s Part 15.247
requirement for the 2.4 GHz PHY.  The analysis examines the various proposals from the
viewpoint of transmission in an N-dimensional space, where N is equal to the number of
chips per symbol.  The mathematical properties reveal several candidate modulations
which have not been proposed earlier, but have equivalent mathematical performance.  It
is shown how data rates up to 22 Mbps with 11 Mchips/sec can be sent using an extended
Barker set compatible with the current processing gain definition.  Finally it is shown that
the processing-gain rule-of-thumb “more than 10 chips per symbol” appears to break
down under certain circumstances by revealing a paradox.
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1. INTRODUCTION

This submission attempts to place the proposed 2.4 GHz PHY high-
rate modulations into a common framework.  New insights are derived
relating the performance of canonical classes of vector modulations.

2. VECTOR MODULATIONS

Due to the FCC’s Part 15.247 requirement for 10 dB processing gain
imposed upon the ISM band, the proposed 2.4 GHz high-rate modulations all
use a spreading scheme.  Consequently a transmit symbol is generated as a
vector of chips.  The chips are transmitted in a time-serial fashion.

A conventional unspread signal is shown in Fig. 2.1.  The symbol can
use any form a digital modulation.  This submission will focus on QPSK
symbols, with BPSK used as a fallback rate.  QAM can also be used.  In all
these cases the baseband signal is a complex scalar with amplitude and phase.

x0  x1  x2  x3

1 chip/symbol

UNSPREAD
SIGNAL

Figure 2.1  Conventional signal viewed as complex scalar
elements.

To meet the processing gain requirement, most systems use 10 chips or
more per symbol.  The logic stated is 10 chips has 10 dB processing gain
according to the common equations presented in textbooks on direct sequence
spread spectrum (DSSS).  The process gain alludes to the robustness to a
narrowband jammer.  This submission will address the processing gain issue
in Section 9.

The conventional signal shown in Fig. 2.1 is shown spread in Fig. 2.2.
The individual digital modulation symbol scalars are chopped-up using an
extra sequence called the chipping sequence.  N chips are used per symbol
time.  The chipping sequence conventionally does not carry any information
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data by itself.  The chipping sequence is modulated (weighted or multiplied)
by the original scalar symbols.  Each set of N-chips can be viewed as a
vector.

In military DS systems the chips are usually driven by a pseudo-
random generator.  In certain wireless systems each user is given a unique
chipping sequence called a signature sequence.  For 1 and 2 Mbps 802.11
DS, the chipping sequence is an 11 bit Barker word.  For 1 Mbps the Barker
word is modulated with a BPSK scalar.  For 2 Mbps the Barker word is
modulated with a QPSK scalar.  The chipping sequence is fixed and identical
for all users.  The Barker chipping sequence is modulated by the data
modulation:  BPSK or QPSK.

PARALLEL
TO 
SERIAL

Transmit
Signal

weight
x0  x1  x2  x3

x0                   x1                    x2

N-chip
Spread
Sequence

DS SPREAD SIGNAL

TRANSMIT
VECTORS

x0  x1  x2  x3

1 chip/symbol

N chips/symbol

Figure 2.2  Scalar signal expanded (spread) to a vector
signal to achieve processing gain.

To carry a higher data rates, the BPSK and QPSK could be extended to
a multilevel QAM signal or high-order PSK.  The 11 bit Barker words would
be modulated by the higher-order modulation.  The proposals have shied
away from this concept since constant envelops with simple symbol level
slicing in the demodulator is preferred for implementation and SNR reasons.

As an alternative scheme, in an effort to carry a high data rate, most of
the proposals have decided either to carry information directly on the
chipping sequences or to transmit (stack) several orthogonal sequences
simultaneously.
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CARRY HIGH-ORDER INFORMATION ON CHIP SEQUENCE

To carry information on the chipping sequence several schemes have
been floated.  Walsh modulation chip sequences are proposed by HARRIS
and MICRILOR.  HARRIS is placing Walsh sequences on the I or Q
channel.  MICRILOR is using MSK.  LUCENT is proposing using PPM’d
Barker chips.  These can all be viewed as M-ary orthogonal modulations
(MOK).  The MOK signals are biphase modulated by all.  HARRIS and
LUCENT plan to send the respective BMOK chip set in a quadrature fashion
to double the data rate. This is BMOK.  There is also quadrature MOK or
quadrature BMOK.  Both MOK and BMOK are commonly described in
textbooks.  In all cases, the fundament sequence is MOK, so this submission
will describe MOK as a canonical vector modulation.  The extensions to
BMOK and quadrature BMOK are easy.

Although not proposed, it will be shown later that FSK is also a MOK
which can be used to form a set of chipping sequences.

M-ary orthogonal modulations viewed as vector modulations is shown
in Fig. 2.3.  A set of orthogonal chipping sequences are stored as candidates
for transmission each vector time (WALSH set, PPM set or FSK set).  To
push the data rate, one particular orthogonal chip sequence is selected using
information bits.  In the example, 2 bits of information select one of four
orthogonal basis functions.  To carry more information, the individual
chipping sequence is modulated with a basic digital modulation.  The
composite modulated chips are transmitted by a parallel-to-serial operation.
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A SET OF ORTHOGONAL
SPREADING FUNCTIONS

b0 b1 b2 b3

N Chips

Select 1 of 42 bits
INFO

2 bits
INFO

QPSK
SYMBOL
GENERATOR

PARALLEL
TO 
SERIAL

Transmit
Signal

M-ARY ORTHOGONAL KEYING (MOK) WITH 
COMPLEX SCALAR WEIGHTING

MOK

Complex Scalar
Weightingx

Figure 2.3  An example M-ary orthogonal vector modulator.
One orthogonal function is sent at a time.

The MOK chipping sequence can be viewed as a vector in N
dimensional space, where N chips are used per vector as shown in Fig. 2.4.
Possibly only K < N orthogonal vectors are in the candidate set.  It is not
necessary for K to equal N.  All of the vectors are orthogonal.  The
transmitted vector randomly appears are each location dependent upon
transmit data.  The receiver does not know which will arrive, so it must look
(correlate) for all of them.
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MOK N-SPACE

1 Candidate of K
Transmitted

3 Orthogonal
Candidates
Shown

Figure 2.4  All candidate MOK vectors are orthogonal.  One
is transmitted each vector interval.  The particular one is
randomly selected by information bits.

STACKING MULTIPLE ORTHOGONAL SEQUENCES

As a second idea for pushing high data rates while maintaining multiple
chips per symbol, some proposals are recommended sending more than one
orthogonal function at a time.  GOLDEN BRIDGE is accomplishing this by
using a set of augmented Barker words [4].  KDD is accomplishing this by
using multiple carrier offsets for the 11 bit Barker [3].  The carrier offset
frequency is equal to the Barker word-rate in MHz to produce decorrelation
over the Barker correlation time in the demodulator.  A common trait is an
increase peak-to-average ratio in the transmit waveform through the sum of
multiple vectors.

Although not one of the 2.4 GHz proposals, OFDM also falls in this
category.  OFDM uses orthogonal complex sinusoidals.

This stacked-MOK canonical form is illustrated in Fig. 2.5.  Here a set
a orthogonal functions are sent simultaneous.  To push even higher data rates
even more orthogonal functions can be used.  GOLDEN BRIDGE is
proposing using a variable number for 1 to 11 orthogonal functions
simultaneously, giving a fine resolution on the selectable data rates.  Later it
will be shown how GOLDEN BRIDGE’s orthogonal-set can be extended to
12 through mathematical insights provided by this submission.
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In Fig. 2.5 each orthogonal basis is modulated with data in the same
fashion as for the 1 and 2 Mbps 802.11 DS specification.  Each orthogonal
basis is then summed to form the transmit composite.

A SET OF ORTHOGONAL
SPREADING FUNCTIONS

b0 b1 b2 b3

N Chips

PARALLEL
TO 
SERIAL

2 bits
INFO

QPSK
GENERATOR

2 bits
INFO

QPSK
GENERATOR

2 bits
INFO

QPSK
GENERATOR

2 bits
INFO

QPSK
GENERATOR

Transmit
Signal

x0

x1

x2

x3

STACKED M-ARY ORTHOGONAL KEYING (STACKED-MOK) 
WITH COMPLEX SCALAR WEIGHTING

Complex Scalar
Weighting

STACKED
MOK

Figure 2.5  An example stacked-MOK vector modulator.  A
single transmit vector is formed by adding (stacking) several
vectors.  Two or more orthogonal functions are added to form
the composite.

The stacked-MOK chipping sequence can be viewed as a sum of K
vectors in N dimensional space, where N chips are used per vector as shown
in Fig. 2.6.  Possibly there are only K < N orthogonal vectors are in the
candidate set.  It is not necessary for K to equal N.  All of the vectors are
orthogonal.  The transmitted vector always appears at each basis location
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independent of the transmit data.  The receiver must look at (correlate for) all
basis components to recover the transmitted data.

STACKED-MOK N-SPACE

3 Orthogonal
Transmitted
Concurrently

Figure 2.6  All orthogonal basis vectors are sent each vector
interval.  The signal does not jump around in N-space.

3. VECTOR MODULATORS VIEWED AS LINEAR
TRANSFORMATIONS

This section attempts to put the vector modulations of the previous
section into a common mathematical setting.  Since vectors are part of the
theory of linear algebra, the signals will be viewed as linear transformations.

Figure 3.1 shows how the spreading functions for the examples of Fig.
2.3 and Fig. 2.5 can be loaded as columns into a basis matrix B.  The matrix
need not be square.  The number of chips may exceed the number of
orthogonal vectors.  For example, LUCENT uses 11 chips but only 8
positions (11 x 8 matrix dimension).  GOLDEN BRIDGE uses 12 chips but a
variable number of columns:  1 to 11.  KDD uses 5 frequency channels with a
frequency-rotated 11 bit Barker in each (11 x 5 matrix).
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b0 b1 b2 b3

A SET OF ORTHOGONAL
SPREADING FUNCTIONS

b0 b1 b2 b3

COLUMN LOADED
MATRIX

Matrix B

Figure 3.1  For notational and mathematical convenience the
spreading functions can be loaded into a matrix.  Each
column in the matrix is one of the spreading functions.  The
matrix is frequently tall (more rows than columns),
corresponding to more chips/function than number of
functions.

It was shown in Fig. 2.5 that stacked MOK summed together multiple
orthogonal functions.  Each orthogonal function is scalar weighted by a
modulation (BPSK or QPSK typically).  Fig. 3.2 shows how this operation
can be formed using the matrix described in Fig. 3.1.  The QPSK-weighting
complex-scalars are x0, x1, x2 and x3.  These respective complex scalars
multiply respective column vectors b0, b1, b2 and b3.  A vector sum forms
the composite.  This is mathematically equivalent to loading the x0, x1, x2
and x3 complex QPSK scalars in a vector x.  The product B x is now equal to
the transmit signal.  With stacked-MOK, none of the elements of x are zero.
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b0
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b1

x1 +
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b3

x3 = STACKED MOK
TRANSMIT VECTOR

b0 b1 b2 b3

Matrix B

X0

X1

X2

X3

Vector x

b0

x0 +

b1

x1 +

b2

x2 +

b3

x3

STACKED MOK
WITH
COMPLEX SCALAR
WEIGHTING

=

= B x

STACKED M-ARY ORTHOGONAL KEYING

Figure 3.2  Stacked-MOK viewed as a matrix multiply.

The same product B x description can be used to formulate MOK.  The
only difference is all the elements of x are zero except for one.  Only one
orthogonal basis is transmitted at a time.  Consequently, only one nonzero
element of x is used to enable and weight the particular basis.
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Figure 3.3  MOK viewed as a matrix multiply.

The transmit operation for both MOK and stacked MOK can be
viewed as shown in Fig. 3.4.  The information bits load the modulation vector
x.  The basis matrix B then performs a linear transformation to create the
transmit vector.  The parallel-to-serial operation converts the vector signal
into practical transmit samples.  This places vector modulations into a unified
mathematical context.
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B
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y
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SERIAL
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SERIAL
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STREAM

INFO
BITS
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Figure 3.4  Generalized vector modulator.

The transmit basis vectors for MOK are shown in Fig. 3.5.  Only one is
sent at a time.

3-ARY MOK SIGNALING

OR OR

Figure 3.5  MOK transmits only one basis vector at a time.

The transmit basis vector for stacked MOK are shown in Fig. 3.6.  All
are sent simultaneously.  Note that Fig. 3.5 and Fig. 3.6 are very similar.
Consequently, the demodulators will be very similar.
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3-LEVEL STACKED 
MOK SIGNALING

Figure 3.6  Stacked-MOK transmits only all basis vectors at
a time.

4.  VECTOR DEMODULATION IN AWGN CHANNEL

This section examines the demodulation architectures for vector
modulations and places the operations in a linear algebraic context.  The
additive white Gaussian noise (AWGN) channel will be the focus.

The basic receiver structure is shown in Fig. 4.1.  This is the common
matched filter or correlation receiver which is described in communications
textbooks.  This architecture is used by both MOK and stacked MOK.  The
MOK receiver must decide which one is the active basis and then strip the
modulation information off.  The stacked-MOK receiver knows that all basis
functions are active and strips the modulation information off each.
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b0* Correlator

b1* Correlator

b2* Correlator

b3* Correlator

RCVD
BITS

SLICER/
DECODER

RCVD
SIGNAL

Figure 4.1  The generic demodulation structure for both
MOK and stacked MOK.

As with the transmitter, the receiver’s correlation vectors can be loaded
into a matrix to make mathematical manipulation easy as shown in Fig. 4.2.

Conjugate
Tranpose of B

b0*

b1*

b2*

b2*

LOAD ROWS

ORTHOGONAL
CORRELATION
FUNCTIONS

Matrix
BH

Figure 4.2  Loading the correlation filter chip sequences into
the rows of a matrix.

To see how the matrix in Fig. 4.2 relates to the earlier shown transmit
frame, let’s progress through a set of steps.  The natural inverse receive
structure for the architectures shown in Fig. 3.4 is shown in Fig. 4.3.  If the
matrix is not square, the singular value decomposition is equivalently used to
define an inverse for the active subspace.
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B

VECTOR
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STREAM

INFO
BITS

MATRIX
INVERSE

-1

Figure 4.3  A matrix inverse is the natural mathematical
operation for reversing the operation of Fig. 3.4.

For orthonormal spreading sequences, the mathematical identities
shown in Fig. 4.4 hold.  If the sequence is merely orthogonal, it can be made
orthonormal via a normalization.  All the basis vectors are made unit length in
a Euclidean sense.  Again, the singular value decomposition holds for a non-
square matrix.  Only the active subspace is important.  For example
GOLDEN BRIDGE works in a 12 dimensional space, but maybe only 4
augmented Barkers are used.  Here, the active subspace is only of dimension
4.

BH B = 
1  0  0  0
0  1  0  0
0  0  1  0
0  0  0  1

IDENTITY
MATRIX

B-1 = BH

ORTHONORMAL
SPREADING
FUNCTIONS

INVERSE EQUAL TO
CONJUGATE TRANSPOSE

Figure 4.4  The inverse matrix is equal to the correlation
matrix for an orthonormal chipping sequences.

Now Fig. 4.3 is redrawn as Fig. 4.4.  This is the mathematically
derived equivalent to Fig. 4.1, which is described in communications
textbooks.
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TRANSPOSE

H

Figure 4.4  The mathematically derived equivalent to Fig.
4.1.

From linear algebra it is known that BH is a projection operator.  It
projects the noisy received signal onto the known transmit subspaces in a
minimum-norm sense.  In practical terms a projection is made onto to each
orthonormal basis vector.

The projection operation can be viewed in Fig. 4.4 and Fig. 4.5.  As
long as noise does not perturb a transmit basis to a point where it is closer to
another basis vector, an error will not be made.  The decision regions are the
hard slicing regions which determine whether or not a error is made.
Crossing a boundary with a noise perturbation causes an error.
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3-LEVEL STACKED 
MOK SIGNALING

QUASI-
CONICAL
DECISION
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Figure 4.5  Decision regions for stacked MOK.

Note for MOK and the equivalent stacked-MOK, the decision regions
are the same.  In high SNR conditions the probability of a symbol error for
stacked-MOK is just K times the symbol error rate for MOK.  This is because
the stacked MOK makes a symbol-error if an error is made in the first basis,
or the second basis vector, or the third basis, … to the Kth basis.

3-ARY MOK SIGNALING

OR OR

QUASI-CONICAL
DECISION REGIONS

Figure 4.6  Decision regions for MOK.
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5. DISTANCE PROPERTIES

This section examines the distance properties associated with the
vector modulations.  This information will be used later to compare the
distance properties of different vector modulation techniques.  The distances
between constellation points defines the error rate.  For an equal amount of
noise, comparing two modulations, the modulation with the greater distance
between constellation points has the lower error rate.

Fig. 5.1 shows that the transmit vector can be described in terms of
orthogonal components.  Each orthogonal component is a QPSK modulation
scalar-weighted vector.  The modulation scalars are x0, x1, x2 and x3.  The
orthogonal basis vectors are b0, b1, b2 and b3.

y = B x
y = x0 b0 + x1 b1 + x2 b2 + x3 b3

VECTORS
(COLUMNS OF B)

QPSK SCALARS

y = y0 + y1 + y2 + y3 y0

y1

y2

OUTPUT’S ORTHOGONAL COMPONENTS

Figure 5.1  The transmit vector decomposed into orthogonal
components.

The squared Euclidean distance can be computed as shown in Fig. 5.2.
Since each basis vector is orthonormal, they are decoupled and of unit length.
The result is very simple.  The transmit vector’s magnitude is equal to the
modulation vector’s magnitude.
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| y |2 = |x0|2 |b0| 2 +|x1|2 |b1| 2 +|x2|2 |b2| 2 +|x3|2 |b3| 2

| y |2 = |x0|2 + |x1|2 + |x2|2 + |x3|2 = | x |2 

EUCLIDEAN DISTANCE SQUARED

OUTPUT ENERGY = INPUT QPSK VECTOR ENERGY

Figure 5.2  The magnitude-squared of the transmit vector is
simply equal to the magnitude squared of the transmit
modulation vector x for a orthonormal basis matrix B.

The distance between constellation points can also be easily computed
as shown in Fig. 5.3.  The squared distance between constellation points is
simply equal to the sum of the squares of the individual modulation
components.  This is a higher-order Pythagorean theorem.  This distance
defines error rate robustness.

y0

y1

y2

| y1 - y0 |2 = (y1- y0) H (y1- y0)
| y1 - y0 |2 = |y1| 2 + |y0| 2 
| y1 - y0 |2 = |x1| 2 + |x0| 2

DISTANCE BETWEEN ORTHOGONAL 
TRANSMISSION POINTS

DEFINES ERROR-RATE PERFORMANCE

Figure 5.3  The distance between constellation points
establishes the error rate performance.

6. SIMILAR MOK MODULATIONS

This section will examine MOK modulations which are equal to within
an orthogonal similarity transformation.  This will highlight some interesting
properties.  In particular, it will be shown that two modulations which are
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orthogonally-similar have the same error rate performance (distance
properties).

First Walsh signaling will be examined.  WALSH signaling is proposed
by both HARRIS and MICRILOR.  Walsh is a popular orthogonal
modulation because the basis vectors are constant envelop and can be
efficiently detected with the Fast Walsh Transform.

The 4-ary Walsh signal set is shown in Fig. 6.1.  By performing an
eigen-decomposition on the Walsh basis matrix B, a similarity transformation
is defined which maps the Walsh basis matrix to a diagonal matrix D.  Linear
algebra textbooks describe a similarity transformation as a change of basis for
a linear transform (vector modulator).  Since the eigenvectors are
orthonormal, the new basis vectors in D are orthonormal as were the original
Walsh vectors.
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4-ary WALSH

EIGEN DECOMPOSITION

B =
    0.5000    0.5000    0.5000    0.5000
    0.5000   -0.5000    0.5000   -0.5000
    0.5000    0.5000   -0.5000   -0.5000
    0.5000   -0.5000   -0.5000    0.5000

EIGENVECTORS

EIGENVALUES

 [Q,D] = eig(B)

Q =
    0.8599   -0.1031    0.0000   -0.5000
    0.3352    0.3710   -0.7071    0.5000
    0.3352    0.3710    0.7071    0.5000
    0.1894   -0.8451         0    0.5000

D =
    1.0000         0         0         0
         0    1.0000         0         0
         0         0   -1.0000         0
         0         0         0   -1.0000

QH  Q = I
QH * B * Q = D

 Q * D * QH = B

ORTHOGONAL
SIMILARITY
TRANSFORMATION

ORTHOGONAL
SIMILARITY
TRANSFORMATION

Figure 6.1  Performing an eigen-decomposition of 4-ary
Walsh.  The eigen-decomposition defines a orthogonal
similarity transformation.

The properties of an orthogonal similarity transformation are shown in
Fig. 6.2.  In short, an orthogonal similarity transformation creates a new
modulation with the same linear and Euclidean properties as the original.
Consequently, the transmit vector energy remains unchanged.  Also, the
distance properties are retained so the error rate performance is the same.
Textbooks on linear algebra emphasize these traits for orthogonal similarity
transformations.
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•  Same Linear Transformation Except a
   Change of Basis
•  Maps One Orthogonal Basis into 
   Another Orthogonal Basis
•  All Angles Maintained
•  All Distances Maintained

ORTHOGONAL SIMILARITY TRANSFORMATION

Figure 6.2  The properties of an orthogonal similarity
transformation as described in any good textbook on linear
algebra.

The eigen-decomposition creates real eigenvectors and real eigenvalues
because the Walsh basis matrix B is real symmetric.  Notice B is no longer
symmetric if the columns of B are reordered.  The modulation characteristics
do not change with this reordering, but the eigenvectors and eigenvalues can
become complex.  Nevertheless, the eigenvectors remain orthonormal.

The eigen-decomposition shown in Fig. 6.1 shows that 4-ary Walsh is
related to 4-ary PPM as shown in Fig. 6.3.  It is obvious the PPM basis in the
matrix D is orthonormal as is the 4-ary Walsh basis B.
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4-ary WALSH
B =
    0.5000    0.5000    0.5000    0.5000
    0.5000   -0.5000    0.5000   -0.5000
    0.5000    0.5000   -0.5000   -0.5000
    0.5000   -0.5000   -0.5000    0.5000

D =
    1.0000         0         0         0
         0    1.0000         0         0
         0         0   -1.0000         0
         0         0         0   -1.0000

PPM

ORTHOGONAL
SIMILARITY
TRANSFORMATION

EQUIVALENT MOK MODULATIONS

Figure 6.3  PPM and Walsh signaling is equivalent to within
an orthogonal similarity transformation.

In more detail, Fig. 6.4 shows the two different vector modulations as
shown in Fig. 6.3.  The Walsh MOK modulation uses B as a basis vector for
transmission.  The PPM MOK modulation uses D as a basis vector.  Both can
be stimulated by the same QPSK modulation vector x.  Notice than the
energy in the transmit vectors (magnitude squared) are equal.  Also, notice
that the distance properties are equal.  Consequently the error rate
performance is identical.
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y = B x      Original Modulation
v = D x      Similar Modulation

| y |2 = |x0|2 + |x1|2 + |x2|2 + |x3|2 = | x |2

| v |2 = |x0|2 + |x1|2 + |x2|2 + |x3|2 = | x |2

| y1 - y0 |2 = |y1| 2 + |y0| 2 = |x1| 2 + |x0| 2

| v1 - v0 |2 = |v1| 2 + |v0| 2 = |x1| 2 + |x0| 2

LENGTHS MAINTAINED

DISTANCES MAINTAINED  
ERROR-RATE PERFORMANCE MAINTAINED

Figure 6.4  Transmit vector lengths and constellation point
distances are maintained by the orthogonal similarity
transformation.

Identical error-rate performance is comforting because textbooks
provide the error rate curves for a MOK modulation.  The textbook does not
describe the particular modulation (Walsh, PPM, FSK) since they are all
equivalent.

Although different MOK modulations have the same AWGN error
performance and transmit vector energy, they can different dramatically in
implementation and signal characteristics.  The Walsh modulation has a
constant envelop, so the peak-to-average is one.  The PPM signal has a large
peak-to-average ratio.

A simple contrast between Walsh and PPM is shown in Fig. 6.5.
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2-ARY WALSH PPM

ORTHOGONAL
BASIS CHANGE

Figure 6.5  A comparison between 2-ary Walsh and 2-ary
PPM which is easily visualized.  The equivalence is obvious.

Fig. 6.6 shows that orthogonal FSK is also equivalent to PPM (and
Walsh).  This has to be true because it is a MOK waveform also.  However, it
is nice that linear algebra identifies the equivalence for us.

The eigen-decomposition of the DFT matrix (basis matrix) is not
symmetric so the eigenvectors and eigenvalues become complex.  The
eigenvector matrix becomes unitary matrix.  This does not fundamentally
change the results because we are working with complex baseband equivalent
signals anyhow.  QPSK symbols are complex scalars loaded in the complex
symbol vector x.  Transmissions are accomplished with the matrix vector
multiply DFT x.
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4-ary FSK

EIGEN DECOMPOSITION

DFT =
   1.0000            1.0000        1.0000      1.0000         
   1.0000          - 1.0000i     -1.0000      1.0000i
   1.0000           -1.0000       1.0000     -1.0000
   1.0000            1.0000i     -1.0000    - 1.0000i

EIGENVECTORS

EIGENVALUES

 [Q,D] = eig(DFT)

Q =
   0.5000   0.8494+ 0.0000i   0.0000+ 0.0000i   0.0526+ 0.1297i
  -0.5000  0.3306+ 0.0638i  -0.6974+ 0.1169i   0.4127+ 0.1218i
  -0.5000  0.1883- 0.1277i   0.0000- 0.0000i  -0.7728- 0.1139i
  -0.5000  0.3306+ 0.0638i   0.6974- 0.1169i   0.4127+ 0.1218i

D =
 -2.0000              0                 0                 0         
        0            2.0000             0                 0         
        0                 0            2.0000i            0         
        0                 0                 0            2.0000

QH  Q = I
QH * DFT * Q = D

 Q * D * QH = DFT

ORTHOGONAL
SIMILARITY
TRANSFORMATION

ORTHOGONAL
SIMILARITY
TRANSFORMATION

Figure 6.7  Performing an eigen-decomposition of 4-ary
Walsh.  The eigen-decomposition defines a orthogonal
similarity transformation.

No one has proposed using FSK as a 2.4 GHz PHY high-rate option,
but linear algebra has identified it as an equivalent option.  Maybe the
primary reason it has not been proposed is the DFT required in the receiver.
But this cannot be too big a hurdle if the OFDM camp’s arguments for the 5
GHz PHY are sound.  On the other hand, the FCC may reject it because the
spectral density is too discrete.

While being mathematically equivalent in AWGN, the FSK waveform
is again quite a different signal than the Walsh or PPM waveform.  While it is
a MOK, the basic signaling elements are complex sinusoids at baseband.
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Pure PPM which shifts an impulse function could be used also, but no
one has proposed that.  LUCENT is using a shifted Barker.

7. SIMILAR STACKED-MOK MODULATIONS

This section compares stacked MOK modulations which are related by
orthogonal similarity transformations.  Recall that the only difference between
MOK and stacked MOK is the formulation of the modulation vector x.  For
MOK, only one element of x is nonzero.  For stacked MOK more than one
element of x is nonzero.

The obvious proposed stacked MOK modulations are by GOLDEN
BRIDGE with stacked augmented Barker words and by KDD [3] which is
uses orthogonal carrier offsets of the 11 bit Barker.  Less obvious is
LUCENT’s stacking of orthogonal data on the I and Q channels, and
HARRIS’s stacking of orthogonal data on the I and Q channels.  The I and Q
channels are orthogonal to one another, so they are stacked (sent
simultaneously).

While they have not been proposed, other schemes are possible:
carrier-offset Walsh, stacked Walsh, OFDM, carrier-offset PPM, etc.  Any
permutation of the basic schemes is possible.

The first modulation to be examined is GOLDEN BRIDGE’s stacked
augmented Barker words.  The 1 and 2 Mbps 802.11 DS 11 bit Barker word
is augmented to create a larger set.  The augmentation algorithm takes the
basic Barker word and produces 11 cyclic-shifted copies.  To make these
copies orthogonal, an additional positive bit is appended to make a total of 12
bits.  The augmented Barkers augBarkerBits are shown in Fig. 7.1.

Let us compute the maximum supportable data rate.  If the chip rate is
11 Mchips/sec and there are 12 chips per Barker symbol and if QPSK (2 bits)
is loaded on each augmented Barker, the data rate is (11/12) times 22
Mbits/sec, or 20.167 Mbps.

Since the eleven 12 bit augmented Barkers are orthogonal, they span
11 dimensions in a 12 dimensional space.  Since a 12 dimensional space has
12 orthogonal basis vectors, an additional orthogonal vector must exist.  To
find the missing basis vector, MATLAB was used to compute the null-space
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of the augBarkerBits matrix.  The null space is orthogonal to the space
spanned by the augBarkerBits’s column vectors.  The vector spanning the
null space was appended as an extra column to form a full rank matrix as
shown in Fig. 7.1.  Further analysis will use the full 12 orthogonal vectors.

With this full-rank matrix supports an even higher data rate than
proposed by GOLDEN BRIDGE.  QPSK (2 bits) can be loaded on each of
the 12 basis vectors.  This achieves a data rate of 22 Mbps.

augBarkerBits =
     1    -1    -1    -1     1     1     1    -1     1     1    -1
    -1     1    -1    -1    -1     1     1     1    -1     1     1
     1    -1     1    -1    -1    -1     1     1     1    -1     1
     1     1    -1     1    -1    -1    -1     1     1     1    -1
    -1     1     1    -1     1    -1    -1    -1     1     1     1
     1    -1     1     1    -1     1    -1    -1    -1     1     1
     1     1    -1     1     1    -1     1    -1    -1    -1     1
     1     1     1    -1     1     1    -1     1    -1    -1    -1
    -1     1     1     1    -1     1     1    -1     1    -1    -1
    -1    -1     1     1     1    -1     1     1    -1     1    -1
    -1    -1    -1     1     1     1    -1     1     1    -1     1
     1     1     1     1     1     1     1     1     1     1     1

12 x 11

allBarkerBits =
     1    -1    -1    -1     1     1     1    -1     1     1    -1    1
    -1     1    -1    -1    -1     1     1     1    -1     1     1    1
     1    -1     1    -1    -1    -1     1     1     1    -1     1    1
     1     1    -1     1    -1    -1    -1     1     1     1    -1    1
    -1     1     1    -1     1    -1    -1    -1     1     1     1    1
     1    -1     1     1    -1     1    -1    -1    -1     1     1    1
     1     1    -1     1     1    -1     1    -1    -1    -1     1    1
     1     1     1    -1     1     1    -1     1    -1    -1    -1    1
    -1     1     1     1    -1     1     1    -1     1    -1    -1    1
    -1    -1     1     1     1    -1     1     1    -1     1    -1    1
    -1    -1    -1     1     1     1    -1     1     1    -1     1    1
     1     1     1     1     1     1     1     1     1     1     1     -1

12 x 12

Add Basis Vector
Spanning Null Space

Figure 7.1  Finding 12 orthogonal basis vectors to span the
12 dimensional span defined by the 12 chip signature
sequences.
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A quick inspection of the allBarkerBits matrix reveals that it is not
symmetric.  Although not necessary, it is convenient to reorder the columns of
the allBarkerBits matrix to form a symmetric matrix as shown in Fig. 7.2.
The symmetric matrix symBarkerBits keeps the eigenvectors and
eigenvalues real.  This makes for more compact bookkeeping.

    1    1    1   -1   -1   -1    1
    1   -1   -1   -1    1   -1    1
    1   -1    1    1    1   -1   -1
   -1   -1    1   -1    1    1   -1
   -1    1    1    1   -1   -1   -1
   -1   -1   -1    1   -1    1    1
    1    1   -1   -1   -1    1   -1
   -1    1   -1    1    1   -1    1
    1   -1    1    1   -1    1    1
    1    1   -1    1    1    1   -1
   -1    1    1   -1    1    1    1
    1    1    1    1    1    1    1

   -1    1    1   -1    1
    1   -1    1    1    1
   -1    1   -1    1    1
    1    1    1   -1    1
    1   -1    1    1    1
   -1    1    1    1    1
    1    1   -1    1    1
    1    1   -1   -1    1
    1   -1   -1   -1    1
   -1   -1    1   -1    1
   -1   -1   -1    1    1
    1    1    1    1   -1

symBarkerBits EIGENDECOMPOSITION
[Q,D] = eig(symBarkerBits)

    0.5805   -0.7224   -0.2214    0.2169    0.0100    0.0141    0.0012
   -0.0819    0.0640    0.4481   -0.7134    0.0404    0.4917   -0.2735
   -0.1941   -0.1975   -0.1282   -0.2570   -0.4057   -0.1273    0.0688
    0.2582    0.1100   -0.0645   -0.0038    0.0966   -0.1493    0.0421
    0.1713    0.3107    0.3779    0.3496   -0.2215    0.2464   -0.6530
    0.2926    0.0979   -0.0913   -0.1438   -0.1965   -0.0568   -0.2188
   -0.3311   -0.0393    0.2205    0.3005   -0.5108    0.3796   -0.1681
    0.2620    0.3355    0.4324   -0.0196   -0.1924    0.4128    0.3606
   -0.1854   -0.2253   -0.1896   -0.2921    0.1065   -0.0707   -0.2091
   -0.2466   -0.1561   -0.0371   -0.0433   -0.2721   -0.0675    0.3022
    0.2526    0.3569    0.4797    0.0188    0.1024    0.4618    0.3544
   -0.3158   -0.0147    0.2747    0.2383    0.5856    0.3438    0.1595

   -0.0135   -0.1677    0.1618    0.5403    0.0889
   -0.0056    0.1167   -0.0525   -0.0170   -0.0559
   -0.0808    0.1798   -0.4868   -0.1346    0.2821
   -0.1082    0.3662   -0.2855    0.1559   -0.3956
   -0.0895   -0.2121   -0.3815    0.1112   -0.1615
    0.5515   -0.0772   -0.1678    0.3853   -0.3681
    0.0539    0.4730   -0.0354   -0.4252    0.0858
   -0.5911   -0.2135   -0.1516    0.2675   -0.1910
   -0.1726   -0.5465   -0.1177   -0.3191   -0.0404
    0.3059   -0.1507    0.0492   -0.3438   -0.6343
    0.4354   -0.3170   -0.4950    0.1160    0.2872
    0.0639    0.2228   -0.4397   -0.1365   -0.2470

EIGENVECTORS

QH  Q = I
QH * symBarkerBits * Q = D

ORTHOGONAL
SIMILARITY
TRANSFORMATION

Q =

D = sqrt(12) * IdentityMatrix
EIGENVALUES

Figure 7.2  The eigendecomposition of the symmmetric
augmented Barker bits matrix, symBarkerBits, forms an
orthogonal similarity transformation to an all diagonal vector
modulation using matrix D.  The diagonal matrix D has the
sqrt(12) because symBarkerBits is not orthonormal, only
orthogonal.
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Fig. 7.3 shows the relationship between the use of full set of
augmented Barker words and stacked PPM.  The symBarkerBits basis
matrix is related to a PPM diagonal matrix D which has the same distance and
angle properties as the original symBarkerbits.  GOLDEN BRIDGE stacks
the Barker bits.  So equivalently stacked PPM becomes conventional QPSK.

One does not think of QPSK as a vector modulation, but it is
mathematically possible to do so.  Each chip is orthogonal to the next in a
time sense.  Note that both square NRZ chips and Raised Cosine chips are
time orthogonal.

symBarkerBits distributes the QPSK information in x across all 12
chips, while the diagonal matrix D places one QPSK complex scalar on each
chip.  The distance properties remain unchanged, and the performance in
either thermal noise or CW jamming is identical for the two.  Both the
symBarketBits and the stacked PPM D support 22 Mbps using QPSK
scalars.

What happens if fewer than 12 stackings are used?  This equivalent to
retaining the full rank matrix, but now x contains elements of value zero.  For
example, if only 4 augmented Barker words are used to convey information,
reducing the data rate, only 4 complex scalar elements of x out of the twelve
possible are nonzero.
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     1     0     0     0     0     0     0     0     0     0     0     0
     0     1     0     0     0     0     0     0     0     0     0     0
     0     0     1     0     0     0     0     0     0     0     0     0
     0     0     0     1     0     0     0     0     0     0     0     0
     0     0     0     0     1     0     0     0     0     0     0     0
     0     0     0     0     0     1     0     0     0     0     0     0
     0     0     0     0     0     0     1     0     0     0     0     0
     0     0     0     0     0     0     0     1     0     0     0     0
     0     0     0     0     0     0     0     0     1     0     0     0
     0     0     0     0     0     0     0     0     0     1     0     0
     0     0     0     0     0     0     0     0     0     0     1     0
     0     0     0     0     0     0     0     0     0     0     0     1

symBarkerBits

ORTHOGONAL
SIMILARITY
TRANSFORMATION

STACKED PPM  = QPSK

y = symBarker * x     Full Augmented Barker
v = D * x                     QPSK

QPSK SYMBOL VECTOR

  =   D

SIMILAR MODULATIONS

Figure 7.3  If all 12 dimensions are stacked, the augmented
Barker technique is mathematically equal to sending straight
QPSK, if the modulation vector x is filled with QPSK scalars.
Both support 22 Mbps under QPSK loading.

This equivalence between the full use of 12 augmented Barkers as
stacked orthogonal functons and QPSK raises a paradox as shown in Fig. 7.4
This paradox will be addressed in Section 9.
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RULE OF THUMB
10 or more chips gives at least 10 dB PG

BREAKDOWN IN RULE OF THUMB
12 chip augmented Barkers is identical to QPSK.
QPSK has no processing gain.

QUESTION
Where is the flaw?

Figure 7.4  Processing gain paradox.

Similarly OFDM is identically equivalent to QPSK if an independent
QPSK scalar is used on all OFDM frequency bins as shown in Fig. 7.5.  This
can be seen by looking at Fig. 6.7.  There the DFT matrix was orthogonalized
for MOK.  Here, with OFDM, the DFT matrix is used in a stacked fashion.
More than one element of x is non-zero.  For the highest data rate all the
elements of x are non-zero.  For FSK only one element of x is non-zero at a
time.

OFDM QPSK

ORTHOGONAL
SIMILARITY
TRANSFORMATION

Figure 7.5  OFDM and QPSK are equivalent modulations.
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8. COMPARISON SUMMARY

The preceding has placed a large set of modulations into a common
mathematical framework.  In particular, M-ary orthogonal keying and stacked
M-ary orthogonal keying was examined.  Even though this mathematical
framework exists, this does not mean each proposed modulation for the high-
rate 2.4 GHz PHY have identical performance.

Subtle performance differences arise from many sources between the
various proposals.  If two modulations are identical to within a similarity
transformation, then they do have identical distance performance, ignoring
implementation effects.  However, most of the proposed modulations are not
exactly equal to within a similarity transformation.  This is primarily due to
differences in information loading for each individual proposal.  For example,
one proposal uses 8 chips, another 11 chips, another 12 chips and another 16
chips.  Also, some proposals place information in quadrature on the I and Q
channel.  Others do not.  Proposals also differ in the average information
bits/chip loading.  Some employ bandwidth expansion by using higher chip
rates.  Others employ bandwidth expansion through carrier-frequency offset
schemes.  Some differ in the number of basis vectors versus the number of
chips in a basis vector.  For example, LUCENT uses only 8 PPM phases but
the basis vectors are 11 chip.  HARRIS uses 8 Walsh basis vectors with 8
chips.

Other performance sources arise from the peak-to-average ratio
requirements in a practical implementation.

How the various modulations handle multipath is an issue also.

9. PROCESSING GAIN THROUGH A
DIMENSIONALITY INCREASE

This section attempts to identify the source of processing gain loss
experienced by the full-stacked augmented Barker signaling scheme, since its
resistance to noise is no better than QPSK.  It will be shown that the
degrading mechanisms effect all proposed systems.  Hard quantified data is
not presented, only qualitative principals are discussed.
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Conventional direct sequence spread sprectrum (DSSS) is realized by a
redundant dimensionality increase as shown in Fig. 9.1.  The basic signaling
elements are transformed to a higher dimensional space in a redundant
fashion.

3 Chips/sym1 Chip/sym

1 Dimensional Signal
in a 1 Dimensional Space

1 Dimensional Signal
in a 3 Dimensional Space

PROCESSING
GAIN

Figure 9.1  A redundant increase in dimensionality from one
to three.

Now a jammer must also operate in the higher dimension as shown in
Fig. 9.2.  Since the jammer does not know in which dimension to place his
energy to score a hit, the probability of a jammer hit drops proportional to the
number of redundant dimensions.  The signal remains a 1-dimensional signal
(lies on a line) in N-space.  The signaling is mathematically rank one.  The
signal redundantly lies in N dimensions.  If the jammer corrupts N-1
dimensions, but not the Nth dimension, the receiver could recover the data
error free if it knew which dimension the jammer failed to corrupt.
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1 Dimensional Signal
in a 3 Dimensional Space

Randomize
Signal
Position

1-D Jammer Does Not
Know Which Dimension
The 1-D Signal Lies

CONVENTIONAL DSSS

Figure 9.2  The jammer does not know where the 1-
dimensional signal lies in the N-dimensional space.

The conventional DS signal can be described as vector modulator since
multiple spreading chips are used per symbol.  This mathematical description
is shown in Fig. 9.3.  Note that it is very similar to the mathematical
description presented earlier for both MOK and stacked MOK.  The primarily
difference is information is transmitted redundantly.  The x vector is loaded
with redundant copies of the same information.
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b0 b1 b2 b3

Matrix B

xK

xK

xK

xK

Vector x

b0

xK +

b1

xK +

b2

xK +

b3

xK

DSSS
SIGNAL

=

= B x

CONVENTIONAL DS SIGNALING
VIEWED AS VECTOR MODULATION

REDUNDANTLY LOAD X VECTOR
WITH DUPLICATE COPIES OF THE
SAME QPSK SYMBOL, xK

Randomize
Option

Figure 9.3  Conventional DSSS vector modulator.

Fig. 9.3 differs from our earlier analysis, since earlier data was not
explicitly sent redundantly.  MOK and stacked-MOK modulations were not
sent in a single dimension (on a single line in N-space), but multiple
dimensions were used as viewed by the receiver as shown in Fig. 9.4.  The
signaling space is not rank one from the receiver’s viewpoint.  Consequently
the jammer has much higher probability for corrupting a transmission.
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PROBLEM :   MOK’s and Stacked MOK’s Use Multiple
                       Dimensions to Convey Information

PROCESSING GAIN LOSS
Jammer 3 Times More 
Likely to Score a Hit
Compared to Conventional DS

Jammer

Figure 9.4  MOK and stacked MOK utilize multiple
dimensions to carry information each vector time.
Conventional DS uses only one dimension.

For example, with a 16-ary Walsh transmission, 16 dimensions are
used to convey information.  The jammer need not try to find only one
dimension but any of the 16 which convey the Walsh information.  It is
erroneous to think the 16-ary Walsh signal only consumes only 16 dimensions
in a signal-space of 2^16 dimensions as some claim.

Note even a OFDM signal meets the conventional definition of DSSS if
data is transmitted on all frequency bins.

The conventional processing gain must be measured by the level of
redundancy built into the modulation.  For example, the amount of
redundancy varies for the augmented Barkers.  The redundancy decreases as
the number of basis vectors stacking increases holding the chip-count
constant.

10. CONCLUSION

This submission has viewed various modulations from a linear
algebraic viewpoint.  Various properties were derived.  Various modulation
types were derived.  It was shown how these relate.  Also, it was shown the
rule-of-thumb for processing gain breaks down under certain circumstances.
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