IEEE P802.15 Working Group for Wireless Personal Area NetworksTM

Overview of ITU-R P.1238-1 "Propagation Data and Prediction Methods for Planning of Indoor Radiocommunication Systems and Radio LAN in the Frequency Band 900 MHz to 100 GHz"

Why Review ITU P.1238-1?

- We need a model of the RF Channel for the Coexistence Model
- ITU is an International Standard on Indoor Radio Propagation
- TG2 can review the standard and decide if it is applicable to the Coexistence Model

Outline of ITU P.1238-1

- 1 Introduction
- 2 Propagation Impairments
- 3 Path Loss Models
- 4 Multipath Delay Spread Models
- 5 Effect of Antenna Polarization
- 6 Effect of Location of XMTR and RCVR
- 7 Effect of Building Material
- 8 Effect of Moving Objects

Propagation Impairments

- Reflection from and Diffraction around Objects
- Transmission Loss through walls, floors and other obstacles
- Channeling of Energy in Corridors
- Motion of Persons and objects in the room

Impact of these Propagation Impairments

- Path Loss
- Temporal and Spatial Variation of Path Loss
- Multipath Effects
- Polarization Mismatch

Site-General Path Loss Model

Path Loss Formula

$$L_{total} = 20 \log_{10}(f) + N \log_{10}(d) + L_f(n) - 28$$

- N Distance Power Loss Coefficient
- f Frequency (MHz)
- d Distance (m) between nodes (d > 1)
- L_f Floor Penetration Loss Factor (dB)
- n Number of Floors Penetrated (n > 0).

Site-General Path Loss Model

 If we let f = 2500 MHz then for our case the formula simplifies to,

$$L_{total} = 40 + N \log_{10}(d) + L_f(n)$$

Distance Power Loss Coefficient

- If we were in Free Space then the "distance power loss coefficient" would be 20.
- However, indoors it is worse due to the environment.
- They give values at several frequencies.
 One case is 1.8-2.0 GHz.
- The value does **not** depend heavily on the frequency.

September 2000 doc.: IEEE 802.15-00/294r0

Distance Power Loss Coefficient

 Here is the values they recommend in three difference indoor environments

Residential	Office	Commercial
28	30	22

Floor Penetration Loss Factor

 They give recommendations for the Floor Penetration Loss Factor also.

Residential	Office	Commercial
4 <i>n</i>	15 + 4 (<i>n</i> -1)	6 + 3 (<i>n</i> –1)

 This may be less of an issue for us since at this time we are not considering multi-floor facilities.

Example of Path Loss Model

- 10 meter range (d = 10)
- All on a single floor (n = 0)
- Office Environment (N = 30)

$$L_{total} = 40 + 30 \log_{10}(10) = 70 dB$$

 Notice that this is the Link Budget for a Typical Bluetooth Piconet

Shadow Fading

- Additional Fading can occur due to Shadowing of the RF signal.
- Shadow Fading statistics are Lognormal with the following Standard Deviation (dB).

Residential	Office	Commercial
8	10	10

Multipath Delay Spread

- Multiple Paths result in a time delay spread in the channel.
- A rough estimate of the delay spread can be obtained from the dimensions of the room and the fact that RF waves travel one meter in approx. 3.3 ns.
- These delayed signals form a timevarying linear filter.

Multipath Delay Spread

- Standard makes some comments on how to measure power delay profile.
- Mentions RMS delay spread*.
- Typical values of RMS delay spread.

Residential	Office	Commercial
70 ns	100 ns	150 ns

^{*} The RMS delay spread is the standard deviation of the power delay profile (see T. Rappaport, *Wireless Communications*).

Statistical Multipath Delay Spread Models

- Introduces the Wide-Sense Stationary Uncorrelated Scattering (WSSUS) Model.
- Replace real scattering paths with only a few uncorrelated multipath components, in the model.
- Combine unresolved multipath components, of similar path length.

Statistical Multipath Delay Spread Models

 The formula for the Multipath channel impulse response is,

$$h(t) = \sum_{n=1}^{N} \sqrt{p_n} g_n(t) \delta(t - \tau_n)$$

- p_n is the receive power for the nth multipath component.
- g_n(t) is a Complex Gossip Time Varying Process combining multiple paths.

September 2000 doc.: IEEE 802.15-00/294r0

Effect of Antenna Polarization

- Circularly polarized antenna can reduce RMS delay spread.
- Directional antennas can reduce RMS delay spread.

doc.: IEEE 802.15-00/294r0

Effect of Motion of Objects in the Room

- The movement of persons and objects within the room can cause temporal variation in the indoor propagation characteristics.
- Apart from people in the vicinity of the antennas or in the direct path, the movement of people in the office has a negligible effect on the propagation characteristics.

Effect of Motion of Objects in the Room

- Measurements at 1.7 GHz indicate that a person into the path of a LOS signal causes 6 to 8 dB drop in received power level.
- At 900 MHz measurements show a signal strength reduction of 4 to 7 dB when the terminal is held at the waist and 1 to 2 dB when held near the head.

Effect of Motion of Objects in the Room

- When the antenna is lower than about 1 meter (like in a desktop computer or laptop) the LOS path may be shadowed by people moving in the vicinity of the terminal.
- Measurements at 37 GHz in an indoor lobby show fades of 10 to 15 dB.

Summary

- I recommend using the ITU specification for indoor path loss.
- More detail is needed for the Multipath delay spread model.
- Likely we will need to use the WSSUS multipath delay spread model.
- Effects of antenna will be hard to model.
- May need to model shadow fading due to obstruction of LOS path.