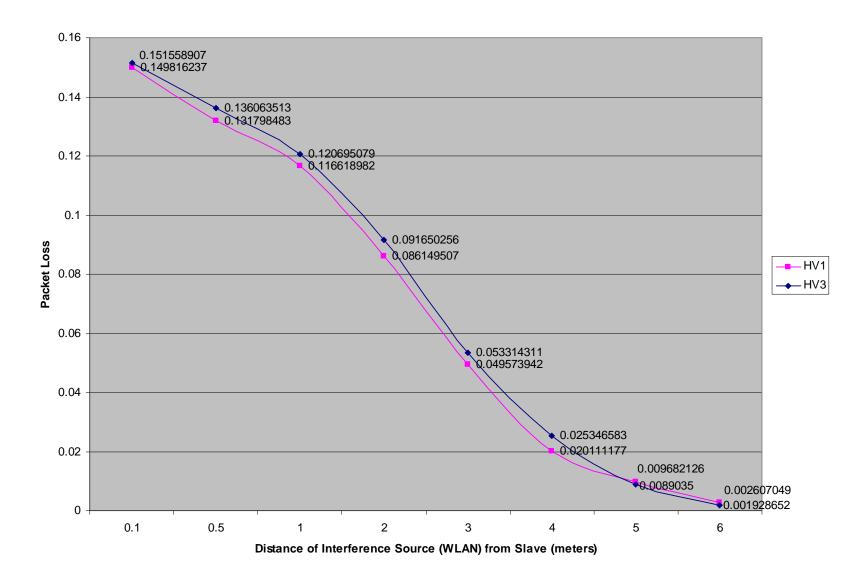
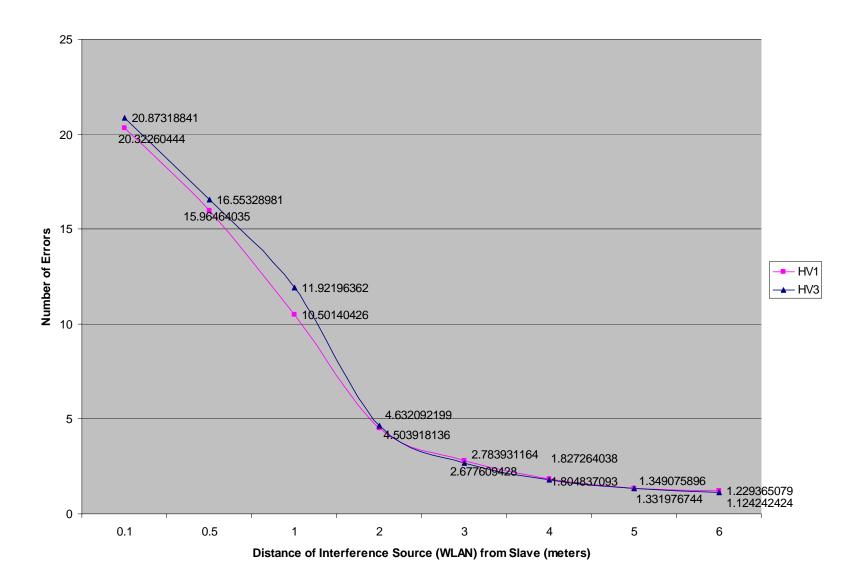
IEEE P802.15 Working Group for Wireless Personal Area NetworksTM

SCORT - An Alternative to the Bluetooth SCO Link for Voice Operation in an Interference Environment


- The Bluetooth SCO Link is a periodic transmission
 - HV3: 2 out of 6 slots used (No FEC)
 - HV2: 2 out of 4 slots used (2/3-rate FEC)
 - HV1: 2 out of 2 slots used (1/3-rate FEC)
- The SCO packets do not include a CRC and retransmission is not included.


- The SCO Link, as an interferer, represents periodic interference with a short period.
- If the Bluetooth power level at the 802.11 receiver is too high, then this periodic interferer is potentially a worse interferer than an ACL Link.

- The SCO Link is more susceptible to 802.11 interference than an ACL Link
 - Under interference it is more likely to cause full packet errors, not just a few bit errors
 - The FEC does very little to mitigate the effect of interference.
 - The SCO link does not support Packet Redundancy, which is what is needed in an interference environment

SCO Link Simulation

- Nada Golmie IEEE 802.15-01/388r0
- Simulation of Bluetooth SCO Link in an 802.11b environment
- SCO Packet Loss Rate
- Residual payload bit error rate

- The SCO Link is weak in an interference environment.
- The FEC is not that beneficial in an interference environment. This is because the bit errors in a packet are not independent.
- Recommendation: Replace bit-level redundancy with packet-level redundancy.

New Link Type for Voice

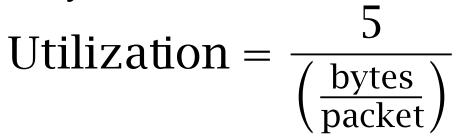
- Keep the Link Connection-Orientated
- Keep periodic transmission
- Eliminate the FEC option
- Add a CRC
- Add packet redundancy

SCORT Link

Synchronous <u>Connection-Oriented</u> with <u>Repeated Transmission</u> (SCORT) Link

Design of New Packet

- The maximum payload size in Bluetooth is 30 bytes.
- If we add two bytes for a CRC then we can allocate at most 28 bytes for voice data.
- Need to meet the 64,000 bits/second throughput requirement.


• Throughput formula,

$$\left(\frac{\text{bytes}}{\text{packet}}\right)\left(\frac{\text{packets}}{\text{second}}\right) = \left(\frac{\text{bytes}}{\text{second}}\right)$$

• Required Throughput for a one-way link,

$$\left(\frac{\text{bytes}}{\text{second}}\right) = 8000$$

- Packet rate can be written as, $\left(\frac{\text{packets}}{\text{second}}\right) = \text{Utilization} (1600)$
- Utilization (fraction of total packets used) is given by,

(bytes/packet)	Utilization	Comments
30	1/6	SCO HV3 Packet
28	5/28	Maximum number of bytes per packet
25	1/5	Ratio of smaller integers

- Select 25 bytes/packet for simplicity.
- We want to repeat each packet twice so we need to double the utilization
- We also want to have a two-way link, so we need to double the utilization again.
- Total Utilization for this two-way link is (4/5).

SCORT Packet

- Put 25 bytes of voice data in payload
- Add 2 byte payload CRC
- Total payload is 27 bytes < 30 bytes
- Transmit each packet twice.
- If first packet has correct CRC use it.
- If first packet is bad and second packet is good, use second packet.
- If both packets are bad use a benign filler packet.

SCORT Packet

- Use 8 out of every 10 packets
 - 80% Utilization of piconet capacity
- Leave 2 packet for ACL traffic

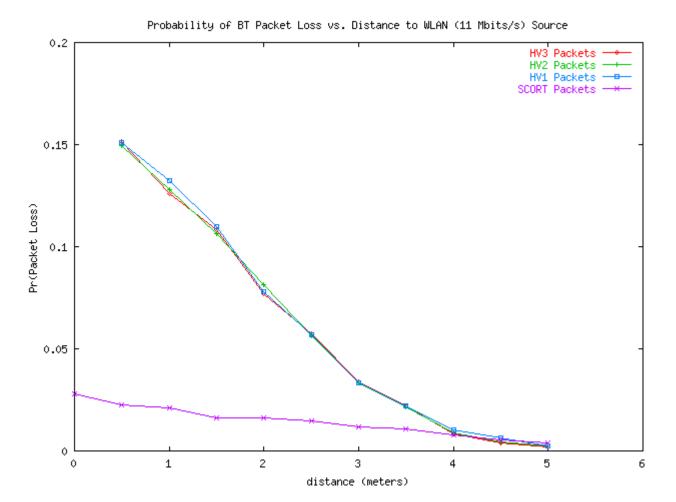
- 20% capacity remaining for data

Master Packet 1	Slave Packet 1	Master Packet 1		Master Packet 2			Slave Packet 2	ACL Data	ACL Data	
--------------------	-------------------	--------------------	--	--------------------	--	--	-------------------	-------------	-------------	--

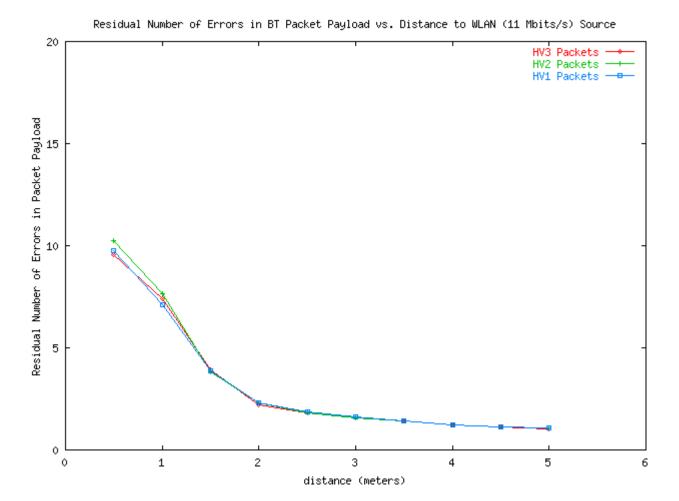
Packet Loss Rate Calculation

- Assume the uncorrected packet loss rate is p
- The corrected packet loss rate is p^2

Uncorrected Packet Loss Rate (p)	Corrected Packet Loss Rate (p ²)				
20%	4%				
10%	1%				
5%	0.25%				


New Simulation

- At my request Nada Golmie simulated the SCORT link, and the original SCO links, in an IEEE 802.11b interference environment.
- Plotted
 - Packet Loss Rate
 - Residual bit errors in SCO links


New Simulation

- Packet Loss Definition:
- For SCO Link
 - Bad Synch word or Bad Header
- For SCORT Link
 - Bad Synch word or Bad Header or Bad
 Payload

New Simulation - Packet Loss Rate

New Simulation - Residual Bit Errors

Summary

- SCO Link with FEC
 - Uses redundant *bits* within a packet, whose probability of error are **not** independent
- SCORT Link
 - Uses redundant *packets*, whose probability of error are independent.

Summary

- SCORT Link
 - Uses 80% of the piconet capacity, which is less than the HV1 Link, which uses 100% of the piconet capacity
 - Has much better performance than HV1
 Link in an interference environment.
- If packet is bad, then a benign filler packet can be substituted for bad packet, resulting in better audio fidelity.