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1. Introduction 
02200r0P802-15_TG3-Mandatory-ECC-Security-Algorithm-Suite defines a security architecture 
designed to accommodate a selected highly secure elliptic curve public key cryptosystem 
including state of the art authentication methods using digital signatures and implicit digital 
certificates.  Optional support for X.509 digital certificates is also provided.  The implementation 
specified herein is intended to provide security services for the 802.15.3 WPAN, conforming 
with well established security standards as cited herein. 

Annex B of the 802.15.3 specification contains implementation notes for designer that should be 
carefully read and understood.  The drafters of this document warn anyone implementing this 
subject matter that any variations from the specified algorithms, security architecture, and 
recommended hardware protections may result in an insecure implementation and the possible 
compromise of secured information channels, as well as the unwanted exposure of private 
information. 

1.1 Scope 
This document covers text related to the selected mandatory ECC security suite (described 
herein as an algorithm suite) for inclusion in the 802.15.3 standard. 

1.2 Purpose 
This document is intended as an algorithm suite submission, including required architectural 
protocol elements, to the 802.15 TG3 for inclusion in the 802.15.3 standard.  The text from this 
submission is suitable for direct incorporation in the standard. 

1.3 Document Organization 
This document contains text for the selected mandatory ECC algorithm suite for the 802.15.3 
standard.  In addition, this submission includes informative text that may or may not be included 
in the draft standard to support the architecture. 

The document is organized into the following categories: 

• References (Normative) 

• Instantiation of the algorithm suite (Normative) 

• Security considerations for an informative annex (Informative) 

The reference section describes the external documents that are required in order to implement 
the cryptographic algorithms proposed in this document. 
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The instantiation section provides text and information for the aspects of the algorithm suite that 
must be defined in order to fully implement the security architecture.  This text may be added to 
the main section of the document or to an annex. 

The security considerations provide security analysis and rationale for the algorithm suite.  For 
the security architecture, the reader is referred to document 02/130r1 NTRU Security 
Architecture Proposal. 

2. Definitions, Abbreviations, and References 

2.1 Definitions and Abbreviations 
Our definitions follow those as defined in [ANSI X9.63-2001, §2.1]. 

2.2 Symbols and Notation 
Our notation follows [ANSI X9.63-2001, §2.2]. 

2.2.1 Normative References 
1. ANSI X9.30-1997, The Digital Signature Algorithm (DSA) (Revised), Annex F: Parameter 

Settings and Security, American Bankers Association, July 1, 1999. 
2. ANSI X9.63-2001, Public Key Cryptography for the Financial Services Industry – Key 

Agreement and Key Transport Using Elliptic Curve Cryptography, American Bankers 
Association, November 20, 2001. 

3. FIPS Pub 180-1, Secure Hash Standard, Federal Information Processing Standards 
Publication 180-1, US Department of Commerce/N.I.S.T., Springfield, Virginia, April 17, 
1995 (supersedes FIPS Pub 180). Available from http://csrc.nist.gov/. 

4. FIPS Pub 180-2, Draft Specification for the Secure Hash Standard, Federal Information 
Processing Standards Publication 180-2, US Department of Commerce/N.I.S.T., draft, 2001. 
Available from http://csrc.nist.gov/. 

5. FIPS Pub 186-2, Digital Signature Standard (DSS), Federal Information Processing 
Standards Publication 186-2, US Department of Commerce/N.I.S.T., Springfield, Virginia, 
January 27, 2000. Available from http://csrc.nist.gov/. 

6. FIPS Pub 197, Advanced Encryption Standard (AES), Federal Information Processing 
Standards Publication 197, US Department of Commerce/N.I.S.T, November 26, 2001. 
Available from http://csrc.nist.gov/. 

7. FIPS Pub #HMAC, Keyed-Hash Message Authentication Code (HMAC), Federal 
Information Processing Standards Publication #HMAC, US Department of 
Commerce/N.I.S.T., draft, May 30, 2001. Available from http://csrc.nist.gov/. 

8. ISO/IEC 9798-1, Information Technology - Security Techniques - Entity Authentication 
Mechanisms – Part 1: General Model, International Standardization Organization, Geneva, 
Switzerland, 1991 (first edition). 

9. ISO/IEC 9798-2, Information Technology - Security Techniques - Entity Authentication 
Mechanisms – Part 2: Mechanisms Using Symmetric Encipherment Algorithms, 
International Standardization Organization, Geneva, Switzerland, 1994 (first edition). 
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10. ISO/IEC 9798-3, Information Technology - Security Techniques - Entity Authentication 
Mechanisms – Part 3: Entity Authentication using a Public Key Algorithm, International 
Standardization Organization, Geneva, Switzerland, 1993 (first edition). 

11. NIST Pub 800-38A 2001 ED, Recommendation for Block Cipher Modes of Operation – 
Methods and Techniques, NIST Special Publication 800-38A, 2001 Edition, US Department 
of Commerce/N.I.S.T., December 2001. Available from http://csrc.nist.gov/. 

12. PKIX, L. Bassham, R. Housley, W. Polk, Algorithms and Identifiers for the Internet X.509 
Public Key Infrastructure Certificate and CRL Profile, Internet Draft, PKIX Working Group, 
October 2001. 

13. RFC 2104, HMAC: Keyed-Hashing for Message Authentication, Internet Request for 
Comments 2104, H. Krawczyk, M. Bellare, R. Canetti, February 1997. 

14. RFC 2119, Key Words for Use in RFCs to Indicate Requirement Levels, Internet Request for 
Comments 2119, S. Bradner, March 1997. 

15. Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography, Version 1.0, 
Certicom Research, September 20, 2000. Available from http://www.secg.org/. 

16. Standards for Efficient Cryptography, SEC 2: Recommended Elliptic Curve Domain 
Parameters, Version 1.0, Certicom Research, September 20, 2000. Available from 
http://www.secg.org/. 

17. Standards for Efficient Cryptography, SEC 4: Implicit Certificates, working draft, Version 
0.2, Certicom Research, November 14, 2000. 

2.2.2 Informative References 
1. D.R.L. Brown, R. Gallant, S.A. Vanstone, Provably Secure Implicit Certificate Schemes, in 

Proceedings of Financial Cryptography 2001, to appear. 
2. IEEE Draft P802.15.3/D09, Draft Standard for Information Technology – 

Telecommunications and Information Exchange Between Systems – Local and Metropolitan 
Are Networks Specific Requirements – Part 15.3: Wireless Medium Access Control (MAC) 
and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks 
(WPAN), Draft P802.15.3/09, December 7, 2001. 

3. L. Law, A.J. Menezes, M. Qu, J. Solinas, S.A. Vanstone, An Efficient Protocol for 
Authenticated Key Agreement, Technical Report CORR 1998-05, CACR, University of 
Waterloo, 1998.  Available from http://www.cacr.math.uwaterloo.ca. 

4. A.K. Lenstra, Unbelievable Security: Matching AES Security using Public Key Systems, in 
Proceedings of Advances in Cryptology � ASIACRYPT 2001, December 10-13, 2001. 

5. A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptography, Boca 
Raton: CRC Press, 1997. 

6. L.A. Pintsov, S.A. Vanstone, Postal Revenue Collection in the Digital Age, Technical Report 
CORR 2000-43, CACR, University of Waterloo, 2000.  Available from 
http://www.cacr.math.uwaterloo.ca. 
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3. Algorithm Suite Specification 

3.1 Object Identifier 
The object identifiers for the mandatory ECC security suites will be built off of the following 
OID root.  This root is written in ASN.1 format. 

id-ecc-security-suites OBJECT IDENTIFIER ::= { 
iso(1) identified-organization() dod() internet() 
private() enterprises() certicom() ieee802-15-3() 
securitySuites()} 

The object identifier for the security suite proposed in this clause is: 

id-ecc-security-suite1 OBJECT IDENTIFIER ::= { 
id-ecc-security-suites 1} 

The DER encoding of this element, which shall be included in the OID field when this OID is 
used is the hex value: {13 bytes of coded hexadecimal}. 

3.2 Security Functionality Provided 
This security suite provides the following security services. 

Security Service  Provided 

Mutual Authentication ! 
Authenticated Key Agreement ! 
Verification of Public-Key ! 
Key Establishment ! 
Key Transport ! 
Beacon Integrity Protection ! 
Freshness Protection ! 
Command Integrity Protection ! 
ACK Integrity Protection ! 
Data Integrity Protection ! 
Data Encryption ! 
Digital Signatures ! 
Digital Certificates ! 
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3.3 Data Formats 
This table specifies the length and meaning of the undefined data elements from clause 7. 
 

Notation Length Value Description 

PublicKeyObjectType 2 See !. The public key object type is selected from one 
of the following elements: (1) public key only, 
(2) implicit certificate, or (3) X.509 certificate. 
Operations are performed for 128 bit strength 
using the elliptic curve ansit283k1 as specified 
in ANSI X9.63. 

PublicKeyObjectLength 2 37 + 
length of 
add. info 

The length of the additional information 
concatenated with the implicit certificate. 

PublicKeyObject object 
length 

Variable The public key object is defined as one of the 
following elements: (1) public key only, (2) 
implicit certificate, or (3) X.509 certificate. 
Operations are performed for 128 bit strength 
using the elliptic curve ansit283k1 as specified 
in ANSI X9.63. 

AuthResponseType 2 See 
02/130rx 

sec 6.4.1.2.

The auth response type specifies the result of 
an HMAC computation as defined in FIPS 
#HMAC using a 16-byte key and the SHA-256 
hash algorithm as defined in FIPS 180-2. 

AuthResponseLength 2 16 The length of an HMAC computation using a 
16-byte key as defined in FIPS #HMAC. 

AuthResponse 16 Variable The result of the HMAC computation using a 
16-byte key as defined in FIPS #HMAC.   

OIDLength 1 4 The length of the encoded IEEE security suite 
OID. 

OID 4 OID 
Value 

The encoded IEEE security suite OID, which 
is the hex value 00 00 00 00 for the mandatory 
security suite. 

ChallengeType 2 1 The challenge type is an elliptic curve point.  
Operations are performed for 128 bit strength 
using the elliptic curve ansit283k1 as specified 
in ANSI X9.63.  All challenges are randomly 
and unpredictably generated at the time of the 
challenge. 

ChallengeLength 2 37 The length of an ECC MQV ephemeral key, 
which is a point on the curve ansit283k1 as 
specified in ANSI X9.63. 
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Notation Length Value Description 

Challenge 37 Variable The ECC MQV ephemeral key, which is a 
point on the curve ansit283k1 as specified in 
ANSI X9.63. 

ChallengeResponseType 2 4 The challenge response type specifies the result 
of an HMAC computation as defined in FIPS 
#HMAC using a 16-byte key and the SHA-256 
hash algorithm as defined in FIPS 180-2.   

ChallengeResponseLength 2 16 The length of an HMAC computation as 
defined in FIPS #HMAC using a 16-byte key 
and the SHA-256 hash algorithm as defined in 
FIPS 180-2. 

ChallengeResponse 16 Variable The result of the HMAC computation as 
defined in FIPS #HMAC using a 16-byte key 
and the SHA-256 hash algorithm as defined in 
FIPS 180-2.   

KeyPurpose 1 0 The type of key requested in key request 
protocols.  Only seeds are transmitted in this 
security suite. 

EncryptedKeyType 2 2 The encrypted key type specifies the result of 
AES-128 CBC encryption of the 128-bit seed 
with random IV as specified in FIPS Pub 197 
and NIST Special Publication 800-38A. 

EncryptedKeyLength 2 16 The length of an encrypted 128-bit seed 
encrypted using AES-128 CBC encryption with 
random IV as specified in FIPS Pub 197 and 
NIST Special Publication 800-38A. 

EncryptedKey 16 Variable The result of the encryption of the 128-bit seed 
using AES-128 CBC encryption with random 
IV as specified in FIPS Pub 197 and NIST 
Special Publication 800-38A. 

Table XX – Frame object formats 

3.4 Cryptographic Operation Selections 
The security architecture is instantiated by the following algorithms. 

• Three and four-pass versions of MQV based on that specified in ANSI X9.63 [X9.63] 
for public-key key agreement and authentication. 

• 128-bit AES CBC-EDE mode as specified in [AES] for all symmetric encryption. 
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• HMAC with SHA-256 message authentication codes as specified in [HMAC] for 
symmetric integrity protection. 

• SHA-256 cryptographic hash as specified in [FIPS180-2] for all cryptographic hashing. 

• Implicit certification as specified herein for establishing authenticity of public keys. 

• Elliptic curve point arithmetic on the elliptic curve ansit283k1 defined in appendix J.4.5 
of ANSI X9.63. Note that all points are to be transmitted in compressed form. 

• SHA-2 cryptographic hash as specified in FIPS 180-2 [FIPS180-2] for all cryptographic 
hashing. 

 
v Device 

 
• Device sends the following to the 

Security Manager: AReq, ID_D, 
PKObj_D 
 
 
 
 
 

• Retrieves CA public key (either 
from information in PKObj_SM or 
by other means) 

• Extracts Pub_SM and optionally 
AdditionalInfo_SM from PKObj_SM 

• Calculates random x, ephemeral 
public key X. 

• Calculates K = (x+Pr_D.map(X)) . 
(Y + 
map(Y).(D_SM-hash(ID_SM||Additi
onalInfo_SM||Pub_SM)) 

• Generates Enc_D and Int_D using 
the formulas: 
Enc_D = Key(H(K||0x00)) 
Int_D = Key(H(K||0x01)) 

• Generates message authentication 
code on the entire protocol up to 
this point using Int_D 
 
 
 
 
 
 
 
 
 
 

• Checks message authentication 
code. 

• Sets seq_num_SM = 0 
• Sets seq_num_D = 0 

Security Manager 
 
 
 
• Retrieves CA public key (either 

from information in PKObj_D or by 
other means) 

• Extracts Pub_D and optionally 
AdditionalInfo_D from PKObj_D  

• Calculates random y, ephemeral 
public key Y. 

• Selects a unique SSID_D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Calculates K = (y+Pr_SM.map(Y)) . 
(X + 
map(X).(Pub_D-hash(ID_D||Additio
nalInfo_D||Pub_D)) 

• Generates Enc_D and Int_D using 
the formulas: 
Enc_D = Key(H(K||0x00)) 
Int_D = Key(H(K||0x01)) 

• Generates message authentication 
code on the entire protocol up to 
this point using Int_D. 

• Set seq_num_SM = 0 
• Set seq_num_D = 0 

 
 

AReq, ID_D, PKObj_D

CReq, OID, SSID_D, 
ID_SM, PKObj_SM, Y 

CRes, X, SymI (AReq|| 
ID_D|| PKObj_D|| 
CReq|| OID|| SSID_D|| 
ID_SM|| PKObj_SM|| Y) 
= finished1 

ARes, SymI (AReq|| 
ID_D|| PKObj_D|| 
CReq|| OID|| SSID_D|| 
ID_SM|| PKObj_SM|| Y|| 
finished1|| ARes, IntD) 
= finished2 

 

The use of the cryptographic algorithms for each of the security operations performed in the 
piconet are specified in the following table: 
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Use Operation 

Verification of Public-Key The verification of the public key is assured by the certification 
by the appropriate CA and is implicitly verified if the MQV 
authentication and key exchange protocol succeeds.   

Challenge generation The challenges generated during the authentication protocol 
consist of an ephemeral public/private key pair, where the 
private key is an integer and the public key is a point on the 
curve. 

Seed generation (for 
authentication protocol) 

The seed K for the authentication protocol consists of the result 
of the each party’s MQV computation on the challenges, the 
other party’s certification information, the CA’s public key, and 
the party’s own private key. 

Integrity Key Derivation  All integrity keys are generated from the seed K by calculating 
the SHA-256 hash of the seed concatenated with the byte 0x00 
and then setting the key to be the first 128-bits of the result. 

Encryption Key Derivation  All encryption keys are generated from the seed K by 
calculating the SHA-256 hash of the seed concatenated with the 
byte 0x01 and then setting the key to be the first 128-bits of the 
result. 

Challenge response 
generation 

The challenge response is computed by computing the HMAC 
message authentication code on the entire authentication 
protocol up to that point using the integrity key. 

Authentication response 
generation 

The authentication response is computed by computing the 
HMAC message authentication code on the entire authentication 
protocol up to that point using the integrity key. 

Beacon message 
authentication code 
generation (Integrity Code 
information element) 

The message authentication code included in the beacon is 
computed as the HMAC message authentication code on the 
entire beacon up to the integrity code information element using 
the integrity key. 

Command message 
authentication code 
generation 

The message authentication code included in command frames 
is computed as the MHAC message authentication code on the 
entire command up to the message authentication code using the 
integrity key. 

ACK message 
authentication code 
generation 

The message authentication code included in ACK frames is 
computed as the HMAC message authentication code on the 
entire ACK up to the message authentication code using the 
integrity key. 

Data message authentication 
code generation 

The message authentication code included in data frames is 
computed as the HMAC message authentication code on the 
entire data frame up to the message authentication code after 
encryption has been performed using the integrity key. 

Seed encryption operation 
(for request key and 
distribute key) 

The seed for key transport is encrypted using AES with a 
random IV using the encryption key. 

Data encryption generation Data in a data frame is encrypted using AES with a random IV 
using the encryption key. 

Table XX – Security Related Operations 
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The following table specifies the instantiation of the protocols in the notation from clause XX. 
 

Notation Definition 

ID_D The 48-bit IEEE MAC address uniquely identifying the device.  

ID_SM The 48-bit IEEE MAC address uniquely identifying the device. 

PKObj_D 
 

The device’s implicit certificate object. This contains the device’s 
implicit certificate Pub_D. It may additionally contain 
information such as issuer, issue date, expiry date, serial number. 
This is considered to be the string AdditionalInfo, and may or 
may not be present. 

PKObj_SM The security manager’s implicit certificate object. This contains 
the security manager’s implicit certificate Pub_SM. It may 
additionally contain information such as issuer, issue date, expiry 
date, serial number. This is considered to be the string 
AdditionalInfo, and may or may not be present. 

Pub_D The device’s implicit certificate, which is a point on the elliptic 
curve ansit283k1 defined in appendix J.4.5 of ANSI X9.63. 

Pr_D The device’s private key, which is an integer less than the order 
of the elliptic curve ansit283k1 defined in appendix J.4.5 of 
ANSI X9.63. 

Pub_SM The security manager’s implicit certificate, which is a point on 
the elliptic curve ansit283k1 defined in appendix J.4.5 of ANSI 
X9.63. 

Pr_SM The security manager’s private key, which is an integer less than 
the order of the elliptic curve ansit283k1 defined in appendix 
J.4.5 of ANSI X9.63. 

P 
 

The base point of the elliptic curve ansit283k1 defined in 
appendix J.4.5 of ANSI X9.63. 

x A random positive integer, generated by the device, greater than 
2 and less than the order of the elliptic curve ansit283k1 defined 
in appendix J.4.5 of ANSI X9.63. 

X The elliptic curve point xP, calculated according to the 
techniques of ANSI X9.63 

y A random positive integer, generated by the security manager, 
greater than 2 and less than the order of the elliptic curve 
ansit283k1 defined in appendix J.4.5 of ANSI X9.63. 

Y The elliptic curve point yP, calculated according to the 
techniques of ANSI X9.63 
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Notation Definition 

OID Uniquely identifies the security suite. The object identifier is the 
ASN.1 DER encoding of the OID as defined by ISO/ITU 8824.  
For this security suite, this is the hex value 
0x060A2B06010401C116020102. 

SSID_D 
 

8-octet random value chosen by the security manager to uniquely 
identify the keys used to communicate with device D. 

SSID_G 8-octet random value chosen by the security manager to uniquely 
identify the keys used to communicate in the piconet. 

Seed_G 256-bit random value associated with a particular SSID_G used 
to generate the encryption key Enc_G and integrity key Int_G. 

K 256-bit seed value agreed on during the MQV authentication 
process associated with a particular SSID_D used to generate 
the encryption key Enc_D and integrity key Int_D. 

Enc_D 
 

128-bit AES key associated with a particular SSID_D, to be used 
in AES-CBC mode as defined in [AES] and [MODES].  

Enc_G 128-bit AES key associated with a particular SSID_G, to be used 
in AES-CBC mode as defined in [AES] and [MODES].  

Int_D 
 

128-bit HMAC-with-SHA-256 key associated with a particular 
SSID_D 

Int_G 128-bit HMAC-with-SHA-256 key associated with a particular 
SSID_G 

seq_num_SM 
 

4-octet integer in network byte order associated with a particular 
SSID_D, used to count commands sent by the SM using that 
key. The sequence number shall begin counting with 0. 

seq_sum_D 4-octet integer in network byte order associated with a particular 
SSID_D, used to count commands sent by the device using that 
key. The sequence number shall begin counting with 0. 

SymE(m, 
Enc, IV) 

The result of AES encryption of the message m with the AES 
key Enc using CBC mode with initialization vector IV as defined 
in [AES] and [MODES]. 

SymI(m, Int) The result of calculating the HMAC-with-SHA-256 message 
authentication code on the message m with the 128-bit HMAC 
key Int.  If m is “…”, the message authentication code is 
computed over all preceding fields in the frame. 

PP(h, m, K1, 
K2) 

The result of the header h concatenated with the encryption e of 
message m, using the key K1, concatenated with the integrity 
code on h concatenated with e using the key K2.  

H(m) The 32-octet result of SHA-256 hash on the message m as 
defined in [FIPS180-2]. 



March, 2002  IEEE P802.15-02/200r0 

Submission Page 13 Rene Struik, Certicom Corp., Gregg Rasor, Motorola 

Notation Definition 

m||n The concatenation of two messages m and n.  

Key(m) The 128-bit result of truncating the message m to be used as a 
128-bit AES key. 

AReq Authentication Request command header 

CReq Challenge Request command header 

CRes Challenge Response command header 

ARes Authentication Response command header 

KUReq Key Update Request command header 

KURes Key Update Response command header 

KRReq Key Request command header 

KRRes Key Request Response command header 

finished1 
 

SymI(m, Int) where m is the entire set of data in order in the 
preceding protocol up to the point of the message authentication 
code and Int is Int_D. 

finished2 SymI(m, Int) where m is the entire set of data in order in the 
preceding protocol up to the point of the message authentication 
code and Int is Int_D. 
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4. Informal Specification of Cryptographic Primitives and 
Protocols 

4.1 Elliptic-Curves and Points 
Elliptic-curve cryptography (ECC in short) is cryptography carried out in a mathematical object 
known as an elliptic curve over a binary field (EC in short). The elements of an elliptic curve are 
called points. Each point can be represented as a 2-tuple of entries in a mathematical object 
known as a binary field. There are three operations that may be carried out on points of an 
elliptic curve: addition, subtraction, and scalar multiplication. All these operations are defined in 
terms of simple formulas combining the entries of the points. 
 
In elliptic curve cryptography, most computations are carried out relative to a fixed pre-specified 
point G of the curve, called the generating point of the curve. The order m of the generator is the 
size of the set of all multiples of the generating point. 

4.1.1 Public Key Pairs 
In a fixed elliptic curve E, a public key pair is a tuple (Q,q), where q is an integer and where Q is 
the point on the curve determined by multiplying the generating point G of the curve E by the 
private key q, i.e., Q=qG. Here, Q  is called the public key, whereas q is called the private key. 
 
In this specification, we use the following notation for public key pairs. A short-term 
(ephemeral) key pair generated by Party A is denoted by (QA, qA), whereas a long-term (static) 
key pair generated by A is denoted by (WA, wA). 

4.2 Messages 
A message is a string of symbols (e.g., binary digits). Typically, we will use the words 
‘message’, ‘data’, resp. ‘information’ interchangeably. By (x|| y), we denote the concatenation of 
x and y (i.e., the result of writing the string y right behind the string x). If the order between these 
two strings is irrelevant, we write x, y instead. 

4.3 Random Numbers 
Random numbers are strings of binary digits that closely resemble the output generated by a 
sequence of fair coin tosses. Random numbers should not be computationally predictable, i.e., 
knowledge of part of the sequence describing a random number should not give any insight on 
any subsequent part of the describing sequence. 

4.4 Key-Pair Generation 
An ECC key-pair comprises a private key and its corresponding public key.  As explained in 
Section XX, a private key is a number and its corresponding public key is an EC point, 
calculated by multiplying the generating point by the private key.  A key-pair is generated by 
first generating a private key.  Finding the private key from the corresponding public key is 
infeasible, in general, but poor choices of private keys may decrease the effort involved. The best 
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assurance of having good private keys is to use a good random-number generator to generate the 
private keys and select the output appropriately. 
 
Even a good source of random numbers must be used appropriately.  One good method to 
generate private keys from a random-number generator is to discard inappropriate outputs.  This 
method is fully specified in Section XX. 

4.5 Block Ciphers 
A block cipher is an invertible symmetric-key encryption function that maps message blocks of a 
fixed length to message blocks of the same length (say n bits). The input to the block cipher is 
called a plaintext block, its output a ciphertext block. 
 
We denote a symmetric-key encryption function by the symbol EK and its inverse mapping by 
DK, where K is the secret key of the block cipher. Messages and their encrypted counterparts can 
be related using the terminology introduced so far: if a plaintext block m is encrypted to the 
ciphertext block c by applying encryption function EK hereto, i.e., c= EK(m), then message m can 
be recovered by applying the decryption function DK to the ciphertext c, i.e., m=DK(c). 
 
Message padding 
One can extend the functionality of the block cipher E, by stipulating the effect of feeding 
incomplete inputs hereto. If x is a binary t-tuple with 0<t<n, we define E(x):=E(x||0), where 
(x||0) denotes the right-concatenation of the string x with the string of n-t zeros. 
 
With this extended definition, the inverse block cipher D is not a ‘true’ inverse mapping any 
more, since an incomplete input string x and the padded string (x||0) yield the same ciphertext. 
This deficiency can be remedied if the existence of padding can be reliably inferred from side 
information, such as a message length indicator (thus preventing ambiguities in the decryption 
procedure). Note that the extended encryption function defined above may result in message 
expansion, depending upon whether padding of the plaintext is required. 
 
Decryption of an incomplete ciphertext block is not defined. 

4.6 Cryptographic Hash Functions 
A hash function is a mechanism for mapping messages of arbitrary length to messages of small 
fixed length. The output of the hash function, the so-called hash-value of the message, is 
intended to serve as a compact representative image of the message itself. For this reason, a 
hash-value is sometimes called a digital fingerprint or message digest. We only consider 
cryptographic hash functions. A basic requirement on cryptographic hash functions is that these 
must be difficult to forge, i.e., knowledge of a hash-value alone should not allow the effective 
computation of a pre-image hereof, i.e., a message that maps to this hash-value. 
 
One distinguishes between un-keyed hash functions (or Modification Detection Codes (MDCs)) 
and keyed hash functions (or Message Authentication Codes (MACs)). With un-keyed hash 
functions, any party is able to compute the hash-value of a message, whereas, with keyed hash 
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functions, only those parties that have access to the secret key are capable of computing the 
hash-value of a message.  
 
We denote a hash function by the symbol H (or MACK, if it is a keyed hash function with key K). 
If one uses this notation, the hash value provided over the message x is denoted by H(x) (resp. 
MACK(x)). 

4.7 Message authentication 
Message authentication is the process whereby one party is assured (via corroborative evidence) 
of the original source of specified data created at some (typically unspecified) time in the past. 
Thus, message authentication provides the following assurances: 
1. Data integrity. No undetectable modifications, including deletions and injections, of 

messages by unauthorized parties since the time it was created, transmitted, or stored by an 
authorized source; 

2. Source authentication. No confusion about who originated the message. 
Message authentication does not necessarily provide for evidence regarding uniqueness or 
timeliness of data, although it can be augmented to do so. 
 
In our context, message authentication is realized via a protocol based on symmetric-key 
techniques, where both parties participating in the protocol share secret keying material. The 
protocol provides for source authentication, since only parties that share the secret key can 
produce properly formatted messages (assuming there is no confusion about who has access to 
this key).  
 
Message authentication may be augmented to provide for freshness guarantees, by including 
time-variant parameters, such as random numbers and sequence numbers, within the protocol’s 
message data. The inclusion hereof ensures that protocol messages are never repeated; hence, 
recorded messages from previous protocol runs that originated from a particular source cannot 
be re-used to impersonate this source in a future protocol run (thus preventing message replay). 
(Note, that this assumes each party to store previously used time-variant parameters.)  

4.7.1 Message Authentication Protocol 
Message authentication is realized via a 1-pass protocol based on symmetric-key techniques. The 
protocol assumes the prior existence of a shared secret key between all parties involved in the 
protocol. If no other party aside from the specifically identified group of key-sharing parties has 
access to this secret key, the protocol provides evidence to the party that initiated the protocol 
that only parties of the key-sharing group can verify the authenticity of the transferred data and, 
similarly, it provides evidence to each key-sharing party that the transferred data originated from 
one of the key-sharing parties (i.e., source authentication). For a summary of the message 
authentication protocol, see Table 1.  
 
Initial set-up - Publication of system-wide parameters 

- Publication of message authentication code (MAC) used  
- Establishment of a shared secret key K between Party A and Party B 

Protocol - Message 1 (A → B): x, tagA=MACK (x). 
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messages (Note: part of message x may be communicated to B via a separate channel) 
Constraints - Access to the key K shall be restricted to identified group G that includes A and B 
Security services - Source authentication (to B) of string x relative to key-sharing group G 

Table 1: Summary of the message authentication protocol. 
We broadly sketch the workings of the above protocol. 
1. Initial set-up.  Each party has access to an authentic copy of the secret key shared with the 

other party. 
2. Communicator�s actions. The communicating party A computes a message authentication 

check value over a data string and communicates both to the other party B. 
3. Recipient�s actions. The recipient party B computes a message authentication check value 

over the data string received from the other party and compares this with the check value 
received from the other party, to confirm possession of the shared key (and hereby the 
identity of the originator of the communicated data, since the shared key is authentic). 

4.8 Encryption 
Encryption is the process whereby one party transforms a message (the plaintext) into an 
unintelligible form hereof (the ciphertext). A legitimate recipient is able to recover the original 
message from the ciphertext by applying the inverse process of encryption, called decryption. 
For other parties, this is computationally infeasible. Message encryption is realized by logically 
separating messages such as to ensure that only authorized parties may learn their contents. 
Thus, encryption provides the following assurance: 
1. Confidentiality. No confusion about who may gain access to the plaintext. 
Encryption does not necessarily provide for evidence regarding who originated the plaintext 
message, although it can be augmented to do so.  
 
The encryption process depends on the underlying encryption function and the mode of 
operation hereof. Since the specifications hereof are public, the security of the encryption 
process critically depends, as a minimum, on the secrecy of the underlying decryption function 
(and hereby on the secrecy of the decryption key). It is important to note here, that the key 
required for encrypting a message and the key required for decrypting a message need not be the 
same. If knowledge of one of the keys allows one to effectively compute the other key, one 
speaks of a symmetric-key encryption scheme; otherwise, one speaks of a public-key encryption 
scheme. We restrict ourselves to symmetric-key encryption schemes based on block ciphers. 
 
In our context, symmetric-key encryption and decryption is realized via a protocol based on 
symmetric-key techniques, where only those parties that have access to the secret key are 
capable of correctly decrypting ciphertext (or of encrypting pre-determined plaintext). 
 
Encryption may be augmented to provide for authenticity of the communicated message, by 
including some form of redundancy, such as a message authentication code, within the message 
data before encrypting it. The inclusion hereof ensures that only parties that share the secret key 
can encrypt properly formatted plaintext data (Note, that this does assume each party to have the 
means to automatically verify this redundancy.) Encryption may be augmented further to provide 
for freshness guarantees as well, using techniques similar to those discussed for message 
authentication. 
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We denote the encryption process by EncrK,IV and its inverse mapping by DecrK,IV, where K is 
the secret key of the underlying block cipher EK and where IV is an additional data block needed 
for encryption in the applicable mode of operation (if required). Messages and their encrypted 
counterparts can be related using the terminology introduced so far: if a plaintext m is encrypted 
to the ciphertext c by applying encryption function EncrK,IV, i.e., c= EncrK,IV(m), then message m 
can be recovered by applying the decryption function DecrK,IV to the ciphertext c, i.e., 
m=DecrK,IV(c). If necessary, the decryption process uses side information on the purported length 
of the plaintext message, to ensure non-ambiguity in the decryption process. 

4.8.1 Symmetric-Key Encryption: the Cipher-Block Chaining Mode 
The Cipher-Block Chaining (CBC) mode is a mode of operation of an underlying block cipher in 
which the encryption of a plaintext block depends on the value of the previous ciphertext block. 
The CBC mode requires an additional data block IV (the so-called initialization vector), which is 
used in the encryption and decryption of the first message block. A description follows. 
 
By EK, we denote the underlying block cipher, with key K. Let IV be the initialization vector, 
which is a publicly known, yet unpredictable value. The encryption process EncrK,IV transforms 
the ordered sequence of plaintext blocks x1, x2, � into the ordered sequence of ciphertext blocks 
c1, c2,�, where  

cj:=EK (xj ⊕ cj-1) for all j>0 and where c0:=IV. 
 
The decryption process DecrK,IV transforms the ordered sequence of ciphertext blocks c1, c2, 
�into the ordered sequence of plaintext blocks x1, x2,�, where  
  

xj=DK (cj ) ⊕ cj-1 for all j>0 and where c0:=IV.  
 
Encryption of a plaintext that has a length that is not a multiple of the block length of EK is 
defined as the result of executing the following two steps in order: (1) right-concatenating the 
plaintext with as few zeros as possible such as to make its resulting length is a multiple of the 
block length (the so-called padding); (2) encrypting the padded plaintext. Any ambiguities in the 
decryption process are prevented if the existence of padding can be reliably inferred from side 
information, such as a message length indicator. Note that the encryption process defined above 
may result in message expansion, depending upon whether padding of the plaintext is required. 
 
Decryption of a ciphertext that has a length that is not a multiple of the block length of EK (or 
DK) is not defined. 

4.8.2 Symmetric-Key Encryption Protocol 
Encryption is realized via a 1-pass protocol based on symmetric-key techniques. The protocol 
assumes the prior existence of a shared secret key between all parties involved in the protocol. If 
no other party aside from the specifically identified group of key-sharing parties has access to 
this secret key, the protocol provides evidence to the party that initiated the protocol that only 
parties of the key-sharing group may gain access to the plaintext (known as data confidentiality). 
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(We assume access to the plaintext to be restricted to the key-sharing parties only.) For a 
summary of the symmetric-key encryption protocol, see Table 2.  
 
Initial set-up - Publication of system-wide parameters 

- Publication of encryption function EncrK,IV used (and its inverse DecrK,IV) 
- Establishment of a shared secret key K between Party A and Party B 
- Establishment of a shared IV between Party A and Party B (if required) 

Protocol 
messages 

- Message 1 (A → B): c=EncrK,IV (x). 
(Note: c is called the ciphertext corresponding to plaintext x) 

Constraints - Access to the key K shall be restricted to identified group G that includes A and B 
- The string IV shall satisfy the requirements for the specific mode of operation 
- The string x itself shall not be communicated outside the identified group G 
- It shall be possible to unambiguously recover plaintext from properly decrypted 
   ciphertext (possibly using side information, such as a message length indicator) 

Security services - Confidentiality of string x, i.e., restriction of access hereto to key-sharing group G 
Table 2: Summary of the symmetric-key encryption protocol. 

 
We broadly sketch the workings of the above protocol. 
1. Initial set-up.  Each party has access to an authentic copy of the secret key shared with the 

other party. 
2. Communicator�s actions. The communicating party A encrypts a data string and 

communicates it to the other party B. 
3. Recipient�s actions. The recipient party B decrypts the received data string. 

4.8.3 Combined Symmetric-Key Encryption and Message Authentication Protocol 
Combined encryption and authentication is realized via a 1-pass protocol based on symmetric-
key techniques. The protocol assumes the prior existence of two shared secret keys between all 
parties involved in the protocol: an encryption key and an integrity key. If no other party aside 
from the specifically identified group of key-sharing parties has access to this secret keying 
material, the protocol provides evidence to the party that initiated the protocol that only parties 
of the key-sharing group may gain access to the plaintext (known as data confidentiality) and can 
verify the authenticity of the transferred data; similarly, it provides evidence to each key-sharing 
party that the transferred data originated from one of the key-sharing parties and was encrypted 
hereby. (We assume access to the plaintext to be restricted to the key-sharing parties only.) For a 
summary of the combined symmetric-key encryption and authentication protocol, see Table 3.  
 
Initial set-up - Publication of system-wide parameters 

- Publication of encryption function EncrK,IV used (and its inverse DecrK,IV) 
- Publication of Message Authentication Code (MAC) used  
- Establishment of a shared secret encryption key K1 between Party A and Party B 
- Establishment of shared IV between Party A and Party B (if required) 
- Establishment of a shared secret integrity key K2 between Party A and Party B 

Protocol 
messages 

- Message 1 (A → B): x, EncrK1,IV ( y|| MAC), where MAC=MACK2(x || y). 
(Note: part of the string x may be communicated to B via a separate channel) 

Constraints - Access to the keys K1 and K2 shall be restricted to identified group G that includes 
  A and B 
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- The string y itself shall not be communicated outside the identified group G 
- It shall be possible to unambiguously determine y and the MAC value from  
   properly decrypted ciphertext (possibly using side information, such as a message 
length indicator) 

Security services - Confidentiality of string y, i.e., restriction of access hereto to key-sharing group G 
- Source authentication of strings x and y relative to key-sharing group G 

Table 3: Summary of the combined symmetric-key encryption and message authentication 
protocol. 

 
We broadly sketch the workings of the above protocol. For details we refer to … 
1. Initial set-up.  Each party has access to an authentic copy of the secret keys shared with the 

other party. 
2. Communicator�s actions. The communicating party A computes a message authentication 

check value over two data strings and subsequently encrypts the check value and one of the 
data strings. It communicates the resulting ciphertext and the non-encrypted string to the 
other party B. 

3. Recipient�s actions. The recipient party B decrypts the received ciphertext and extracts the 
check value and one of the data strings from this. Subsequently, it computes the message 
authentication check value over the (now recovered) data strings received from the other 
party and compares this with the check value received from the other party, to confirm 
possession of the shared integrity key (and hereby the identity of the originator of the 
communicated data, since the shared integrity key is authentic). 

4.9 Key Establishment 
Key establishment is the process whereby a shared secret key becomes available to two or more 
parties, for subsequent cryptographic use. Secure key establishment protocols provide assurances 
that no party aside from some specifically identified party (or parties) may gain access to a 
particular secret key. In addition, these protocols may provide assurances to a party as to the 
actual possession of secret keying material by some other party. Thus, key establishment 
protocols may provide assurances, including the following: 
1. Key authentication. No confusion about whom an entity might share a secret value with; 
2. Key confirmation. Evidence that some entity actually possesses or has access to a secret key. 
Explicit key authentication refers to providing both these assurances at the same time.  
 
One distinguishes between key agreement and key transport protocols. Key transport is a key 
establishment technique where one party creates or otherwise obtains a secret value and securely 
transfers it to other parties. Key agreement is a key establishment technique in which two or 
more parties derive a shared secret key based upon information contributed by, or associated 
with, each of these, ideally such that no party can predetermine the resulting value. Thus, with 
key transport, one party may control the value of the secret key, whereas, with key agreement, 
such unilateral key control is generally not possible. 
 
In our context, key agreement is realized via a protocol based on public-key techniques, where 
each party participating in the protocol has access to an authentic copy of the other party’s public 
key, and on unpredictable contributions by both parties involved in the protocol. The protocol 
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provides for mutual key authentication, since only parties that possess the private key 
corresponding to their purported public key can correctly determine the shared secret key 
(assuming there is no confusion about who has access to this private key, i.e., assuming a 
properly certified binding between the entity’s identity and its public key). Moreover, it provides 
for key confirmation, since the key is derived from unpredictable inputs provided by both parties 
that are never repeated; hence, recorded messages from previous protocol runs do not leak 
information that could be used to impersonate a party involved in a future protocol run. 
 
In our context, key transport is realized via a protocol based on symmetric-key techniques, where 
all parties participating in the protocol share secret keying material, and on non-repeating 
contributions by this key-sharing group. The protocol provides for source authentication relative 
to the key-sharing group, since only parties that possess the secret key can produce properly 
formatted protocol messages (assuming there is no confusion about who has access to this key). 
Moreover, freshness guarantees are provided, since protocol messages are never repeated; hence, 
recorded messages from previous protocol runs do not leak information that could be used to 
impersonate a party involved in a future protocol run. 

4.9.1 Key Agreement Protocol 
Key agreement is realized via a 3-pass authenticated key agreement with key confirmation 
protocol based on public-key techniques, as well as on unpredictable and non-repeating 
contributions by both parties involved in the protocol. The protocol assumes each of the two 
parties involved in the protocol to have access to an authentic copy of the other party’s public 
key. If the binding between each party’s identity and its public key is properly certified1, the 
protocol provides evidence to the party that initiated the protocol on the true identity of the 
responding party with whom it establishes a shared secret key (i.e., key authentication) and on 
the active participation hereof in the protocol communications (via key confirmation), and vice 
versa. Optionally, the protocol may provide source authentication of a data string communicated 
by the responding party (as part of the protocol messages) to the initiating party and 
confirmation of proper receipt by the responding party of a data string communicated hereto by 
the initiating party, and vice versa. For a summary of the authenticated key agreement with key 
confirmation protocol, see Table 1. 
 
Initial set-up - Publication of system-wide parameters 

- Publication of public-key parameters (shared elliptic curve domain parameters) 
- Publication of message authentication function (MAC) used 
- Exchange of authentic static public keys WA and WB between Parties A and B 

Protocol 
messages 

Message 1 (A → B): QA, x2. 
Message 2 (A ← B): QB, tagB=MACK (IdB|| IdA|| QB|| QA|| y1|| x2), y1, y2. 
Message 3 (A → B): tagA= MACK (IdA|| IdB|| QA|| QB|| x1|| y2), x1. 

(Note: the strings x1, x2, y1, y2 are optional) 
Constraints - QA and QB shall be generated at random (ephemeral public keys) 

                                                 
1 Proper certification of a public key depends on appropriately checking the credentials of a party A with claimed 
public key PA and involves the following two steps: (1) Checking, by cryptographic means, that the entity A has 
access to the private key SA corresponding to PA (the so-called ‘proof of possession’); (2) Checking, by non-
cryptographic means, the purported identity IdA of A (the so-called ‘proof of identity’). 
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- wA and wB shall be privately held by A, resp. B 
- wA and wB shall be valid during the execution of the protocol 

(Note: (WA, wA) and (WB, wB) are public key pairs of A, resp. B) 
Security services - Key agreement between A and B on the shared key K  

- Mutual entity authentication 
- Mutual explicit key authentication 
- Perfect forward secrecy; unknown key-share resilience; known-key security 
- (Optional) Authentication of string x1 by A, resp. of string y1 by B 
- (Optional) Confirmation of proper receipt of string x2 by B, resp. of string y2 by A 

Table 4: Summary of the Authenticated Key Agreement with Key Confirmation Protocol.  
 
The actual workings of the protocol depend on the public key system at hand. We broadly sketch 
Full MQV with Key Confirmation, an instantiation of the above protocol based on elliptic curve 
techniques. Instantiations of the above protocol based on ordinary public key techniques are, 
however, also possible, using the same formats. 
1. Initial set-up.  Each party has access to the system-wide elliptic curve parameters of some 

elliptic curve. Each party randomly generates a long-term (static) public key pair and 
publishes the public key (but not the private key). We assume each party to have access to an 
authentic copy of the other party’s static public key. 

2. Key contributions. Each party randomly generates a short-term (ephemeral) public key pair 
and communicates this ephemeral public key to the other party (but not the private key). 

3. Key establishment. Let (WA, wA) be Party A’s static public key pair and let (QA, qA) be its 
ephemeral public key pair. Let (WB, wB) and (QA, qA) be the corresponding public key pairs of 
Party B. Each party computes the shared key based on the static and ephemeral elliptic curve 
points it received from the other party and based on the static and ephemeral private keys it 
generated itself. Here, Party A computes KA=(qA + map(QA) wA) (QB + map(QB)WB), 
whereas Party B computes KB=(qB + map(QB) wB) (QA + map(QA)WA). Here, map is a fixed 
function that maps elliptic curve points to integers. Due to the properties of elliptic curves, 
both keys are the same, i.e., KA=KB, and can, indeed, be computed by either party. 

4. Key authentication. Each party verifies the authenticity of the long-term static key of the 
other party, to obtain evidence that the only party that may be capable of computing the 
shared key is, indeed, its perceived communicating party. 

5. Key confirmation. Each party computes a message authentication check value over the 
strings communicated with the other party, to prove possession of the shared key to the other 
party. This confirms to each party the true identity of the other party and proofs that that 
party successfully computed the shared key. 

4.9.2 Key Transport Protocol 
Key transport is realized via a 1-pass authenticated key transport protocol based on symmetric-
key techniques, as well as on non-repeating contributions by all parties involved in the protocol 
(to prevent message replay). The protocol assumes the prior existence of two shared secret keys 
between all parties involved in the protocol: an encryption key and an integrity key. If no other 
party aside from the specifically identified group of key-sharing parties has access to this secret 
key, the protocol provides evidence to the party that initiated the protocol that only parties of the 
key-sharing group may gain access to the transported key (i.e., key authentication) and can 
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verify the authenticity of the transported key; similarly, it provides evidence to each key-sharing 
party that the transported key originated from one of the key-sharing parties (i.e., source 
authentication). Optionally, the protocol may provide source authentication of a data string 
communicated by the initiating party (as part of the protocol message) to each key-sharing party. 
For a summary of the authenticated key transport protocol, see Table 2. 

4.10 Entity Authentication 
Entity authentication is the process whereby one party is assured (through the acquisition of 
corroborative evidence) of the true identity of a second party involved in a protocol, and that this 
second party has actually participated in the protocol (i.e., is active at, or immediately prior to, 
the time the evidence was acquired). Thus, entity authentication provides the following 
assurances: 
1. Authenticity. No confusion about whom an entity is really communicating with; 
2. �Aliveness�. Evidence that this entity is actively participating in the communications. 

 
In our context, entity authentication is realized via a challenge-response protocol based on 
symmetric-key techniques, where both parties participating in the protocol share secret keying 
material. The protocol provides for source authentication, since only parties that share the secret 
key can produce proper responses to unpredictable challenges (assuming there is no confusion 
about who has access to this key). Moreover, it provides for aliveness guarantees, since 
challenge messages are unpredictable and never repeated; hence, recorded messages from 
previous protocol runs do not leak information that could be used to impersonate a party 
involved in a future protocol run. 

4.10.1 Unilateral Entity Authentication Protocol 
Unilateral entity authentication is realized via a 2-pass challenge-response protocol based on 
symmetric-key techniques. The protocol assumes the prior existence of a shared secret key 
between the two parties involved in the protocol. If no other party has access to this secret key, 
the protocol provides evidence to the party that initiated the protocol on the true identity of the 
responding party and on the active participation hereof in the protocol communications. 
Optionally, the protocol may provide source authentication of a data string communicated by the 
responding party (as part of the protocol messages) to the initiating party and confirmation of 
proper receipt by the responding party of a data string communicated hereto by the initiating 
party. For a summary of the unilateral entity authentication protocol, see Table 1. 
 
Initial set-up - Publication of system-wide parameters 

- Publication of message authentication code (MAC) used 
- Establishment of a shared secret key K between Party A and Party B 

Protocol 
messages 

Message 1 (A → B): RNDA, x2. 
Message 2 (A ← B): RNDB, tagB=MACK (IdB|| IdA|| RNDB|| RNDA|| y1|| x2), y1. 

 (Note: the strings x2 and y1 are optional)  
Constraints - RNDA and RNDB shall be generated at random 

- Access to the key K shall be restricted to A and B 
Security services - Unilateral entity authentication from B to A 

- (Optional) Authentication of string y1 by B 
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- (Optional) Confirmation of proper receipt of string x2 by B 
Table 5: Summary of the unilateral entity authentication protocol. 

 
We broadly sketch the workings of the above protocol. 
1. Initial set-up.  Each party has access to an authentic copy of the secret key shared with the 

other party. 
2. Challenge contributions. The challenging party A randomly generates a random number and 

communicates this challenge to the other party. 
3. Key confirmation. The responding party B computes the message authentication check value 

over the strings communicated with the other party, to prove possession of the shared key to 
the other party (and hereby its identity, since the shared key is authentic). The challenging 
party verifies the check value communicated by the other party, to confirm possession of the 
shared secret key hereby.  

4. Aliveness guarantees. The initiating party confirms aliveness of the other party by ensuring 
that its challenge contribution is random and ‘fresh’.  

4.10.2 Mutual Entity Authentication Protocol 
Mutual entity authentication is realized via a 3-pass challenge-response protocol based on 
symmetric-key techniques. The protocol assumes the prior existence of a shared secret key 
between the two parties involved in the protocol. If no other party has access to this secret key, 
the protocol provides evidence to the party that initiated the protocol on the true identity of the 
responding party and on the active participation hereof in the protocol communications, and vice 
versa. Optionally, the protocol may provide source authentication of a data string communicated 
by the responding party (as part of the protocol messages) to the initiating party and 
confirmation of proper receipt by the responding party of a data string communicated hereto by 
the initiating party, and vice versa. For a summary of the mutual entity authentication protocol, 
see Table 3. 
 
Initial set-up - Publication of system-wide parameters 

- Publication of message authentication code (MAC) used 
- Establishment of a shared secret key K between Party A and Party B 

Protocol 
messages 

Message 1 (A → B): RNDA, x2. 
Message 2 (A ← B): RNDB, tagB=MACK (IdB|| IdA|| RNDB|| RNDA|| y1|| x2), y1, y2. 
Message 3 (A → B): tagA= MACK (IdA|| IdB|| RNDA|| RNDB|| x1|| y2), x1. 

(Note: the strings x1, x2, y1, y2 are optional)  
Constraints - RNDA and RNDB shall be generated at random 

- Access to the key K shall be restricted to A and B 
Security services - Mutual entity authentication 

- (Optional) Authentication of string x1 by A, resp. of string y1 by B 
- (Optional) Confirmation of proper receipt of string x2 by B, resp. of string y2 by A 

Table 6: Summary of the mutual entity authentication protocol. 
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We broadly sketch the workings of the above protocol. 
1. Initial set-up. Each party has access to an authentic copy of the secret key shared with the 

other party. 
2. Challenge contributions. Each party randomly generates a random number and 

communicates this challenge to the other party. 
3. Key confirmation. Each party computes the message authentication check value over the 

strings communicated with the other party, to prove possession of the shared key to the other 
party (and hereby its identity, since the shared key is authentic). Each party verifies the check 
value communicated by the other party to confirm possession of the shared key hereby. 

4. Aliveness guarantees. Each party confirms aliveness of the other party by ensuring that its 
challenge contribution is random and ‘fresh’.  

4.11 Public-Key Certificates 
Proper certification of a public key depends on appropriately checking the credentials of a party 
A with claimed public key PA and involves the following two steps: (1) Checking, by 
cryptographic means, that the entity A has access to the private key SA corresponding to PA (the 
so-called ‘proof of possession’); (2) Checking, by non-cryptographic means, the purported 
identity IdA of A (the so-called ‘proof of identity’).  We distinguish the following types of 
certificates: 
 
1. Public key certificates. The external trusted party T provides his signature over A’s public 

key and A’s identifying information and includes these data in a public key certificate. 
Generation of the public key certificate requires interaction between Party A and the external 
trusted party, to corroborate evidence as to A’s true identity and as to its possession of the 
corresponding private key. Verification of the authenticity of A’s public key requires the 
signature of Party T, as contained in the public key certificate, to be verified. Thus, it only 
necessitates the verifying party to have access to an authentic copy of the (public) signature 
verification key of Party T, rather than to the public keys of all its potential communicating 
parties. 

2. Implicit certificates. This provides an alternative for public key certificates. The main idea 
here is that it is not necessary to store public keys as such; storage of related data instead, 
plus an efficient procedure for reconstructing public keys from these, suffices. With 
implicitly certified public keys, the public key is reconstructed based upon the identity of the 
device the public key is associated with and the previously mentioned related data. In 
addition, evidence regarding the authenticity of the reconstructed public key string is 
provided. As with public key certificates, the generation of implicit certificates requires 
interaction with the external trusted party. 

3. Manual certificates. This provides a mechanism to form a compliant certificate based on a 
predetermined action of a user that establishes a binding of the public key with that action to 
“certify” that the public key belongs to an entity.  The result is useable with cryptographic 
authentication means to automatically identify the entity. 

 
The suitability of either implementation method depends on the choice of public key primitive. 
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The above description assumes that each entity generates its own public key pair(s). As an 
alternative, the trusted party might generate these on behalf of the entity, provide his signature 
hereover, and have the public key pair securely stored on the device, during the manufacturing 
hereof (see §10.3.1.1). 
 
In all cases, an authentic copy of the trusted party’s public signature verification key must be 
stored in each device, prior to its operational deployment (i.e., either at the time of 
manufacturing of the device or at personalization of the device). 
 
In our context, public keying material is created once and for all and is never revoked, nor is the 
public signature verification key of the external trusted party. The reason for this design choice 
is that, with short-range communications technology, one cannot rely on on-line centralized key 
management (although off-line centralized key management would have been possible). For 
details, see §10.1.2. 
 
Notes 
It is important to realize that the different methods for generating authentic public key pairs, as 
discussed above, require different levels of trust in the trusted party. If the trusted party both 
generates and authenticates an entity’s public key pair, it must be trusted not to disclose the 
private key and not to create false credentials. If the trusted party merely authenticates a public 
key that was generated by the entity itself, it can still create false credentials if certificates are 
used; with public key certificates, it can completely control the public key value, whereas with 
implicit certificates key control this is not possible. For details, we refer to [9, Remark 13.7]. 
Last but not least, a party that generates its own keying material must have sufficient assurances 
as to the quality of its random number generator.  
 
A more detailed discussion of this topic is beyond the scope of this document. 

4.11.1 Authenticity of digital signatures 
We assume the external presence of a distinguished party T who vouches for the authenticity of 
the binding between an entity A and its (public) signature verification string PA.  
 
The actual implementation of this binding, and a verification mechanism therefore, depends on 
context. 
Usually, this binding is implemented by provision of a signature by T over the pair (A, PA) and 
by inclusion of these data in the certificate CertT (A, PA). In its basic form, verification of this 
binding now only requires the signature of Party T over the pair (A, PA), as contained in the 
string CertT (A, PA), to be verified. Thus, it only necessitates the verifying party to have access to 
an (authentic copy of) the public verification string VALSignT of Party T (rather than to the 
public key strings of all its (potential) communicating parties). In closed systems, this authentic 
binding could also be provided differently, e.g., by storage of bindings in an authentic hardware 
module. Depending upon the actual implementation environment, we therefore make the 
following assumption: 
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1. In the presence of a (rudimentary) external certificate structure, we assume the authentic 
transfer of T’s public verification string PT to Party X to be realized via out-of-band means, 
at configuration of the card of Party X2. 

2. In the absence of a certificate structure, we assume the authentic bindings between entities 
and their signature verification strings to be realized once and for all via out-of-band means, 
by incorporation of these data, during the configuration of each card. 

 
Lifecycle issues 
Signature verification requires verification of the authenticity and validity of signature 
verification strings. Here we consider the effect of changes to these. We assume a setting with 
certificates. 
1. Introduction of a new entity. This requires off-line involvement of the trusted party of that 

entity, who should create and publish the corresponding certificate, for future use by other 
entities. We assume the new entity to be already endowed with a private signature key that is 
securely stored on its card, maintaining integrity. 

2. Removal of an entity. This requires off-line involvement of the trusted party of that entity, 
who should revoke the corresponding certificate. 

3. Update of long-term keying material of a trusted party. This requires the transfer of an 
update of the authentic signature verification string PT of trusted party T. Hence, updates of 
long-term keys require the presence of an authentic channel with all entities in the system. 

In the absence of a certificate structure, authentic updates of signature verification strings might 
be realized by out-of-band (i.e., non-cryptographic) means or, alternatively, via the execution of 
an authentic data transfer protocol involving another trusted party that is already present. A 
detailed discussion of this topic is beyond the scope of this document. 

4.11.2 Certificate Issuance 
Certificate issuance is the process whereby a device obtains a certificate from a certificate-
issuing authority.  The output of the process is a certificate and is beyond the scope of this 
standard. 

4.11.3 Implicit Certificates 
Implicit certificates are an efficient alternative to explicit certificates, especially X.509 
certificates.  One piece of data yields both the device’s public key and the implicit signature of 
its issuer.  The protocol described herein allows for more than one issuer by including an 
optional field containing information that specifies the issuer, thus allowing the recipient to 
retrieve the appropriate public key. The process of computing the device’s public key from the 
implicit certificate is known as reconstructing the public key. 
For a summary of implicit certificate use, see the following Table. 
 
Initial set-up - Publication of system-wide parameters 

- Publication of issuer’s public key WT. 
- Publication of cryptographic hash H. 

                                                 
2 If communication requires verification of signatures provided by Parties A and B that resort under different trusted 
parties, then cross-certification is required. 
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Protocol  Step 1 (Receive Party A’s implicit certificate): ImpCertT(IdA) = (IdA,D,IssuerInfo). 
Step 2 (Retrieve issuer’s public key): WT. 
Step 2 (Compute Party A’s public key): WA := H(IdA||D).D + WT. 

Constraints - Party B has trusted copy of issuer’s public key 
Security services -  

Table 7 Summary of implicit certificates. 

4.11.4 X.509 Certificates 
Certificates defined by ISO X.509 (as part of The Directory) are explicit certificates. A 
description and use of these certificates may be found in RFC2459  or X.509. 
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5. Formal Specification of Cryptographic Primitives and 
Protocols 

5.1 Elliptic-Curves and Points 
This standard uses the specification of elliptic curves as described in ANSI X9.63-2001.  The 
elliptic curves are defined over a binary field using a polynomial representation.  Points are 
represented in a compressed format. 
 
Elliptic curve points are stored as octet strings.  Each point is represented as a tuple with entries 
in a binary field. In our curve, each element of the binary field requires 46 bytes of storage, thus 
requiring 92 bytes of storage for the point.  (A further classification byte is required by most 
standards.)  A space optimization, called point compression, allows a point to be stored in 47 
bytes, at negligible computational overhead.  Descriptions of point compression and 
decompression may be found in Sec. 4.2.2 of ANSI X9.63-2001. 

5.2 Challenge Validation Primitive 
Challenge validation refers to the process of checking the length properties of a challenge. It is 
used to check whether the challenge to be used by the schemes in the standard have a length that 
is sufficient for the scheme at hand. 
 
Input: The input of the validation transformation is a valid challenge domain parameter 

D=[minchallengelen, maxchallengelen] together with the bit string Challenge.  

Actions: The following checks are made: 

1. Calculate the length challengelen of the bit string Challenge.  

Output: If challengelen ∈ D, then output ‘valid’; otherwise, output ‘invalid’. 
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5.3 Unilateral Entity Authentication Scheme 
This section specifies the unilateral entity authentication scheme. A MAC scheme is used to 
provide key confirmation. 
 
Figure 12 illustrates the messaging involved in the use of the unilateral entity authentication 
scheme. 

The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation 
specified in Section 6.11.1 to obtain evidence from V as to the actual involvement hereof in a 
real-time communication with U if U is the protocol’s initiator. V uses the transformation 
specified in Section 6.11.2 to provide this evidence to U if V is the protocol’s responder. 
 
If U executes the initiator transformation and V executes the responder transformation and if 
access to the shared key is restricted to U and V, then U will obtain unilateral entity 
authentication of V. 
 
Prerequisites: The following are the prerequisites for the use of the scheme: 

1. Each entity has access to a bit string MacKey of length mackeylen bits to be used as the 
key. Each party shall have evidence that access to this key is restricted to the entity itself 
and the other entity involved in the entity authentication scheme. 

2. Each entity has an authentic copy of the system’s challenge domain parameters 
D=[minchallengelen, maxchallengelen]. 

3. Each entity shall be bound to a unique identifier (e.g. distinguished names). All 
identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier will be 
denoted by the bit string U. Entity V’s identifier will be denoted by the bit string V. 

Figure 12 – Unilateral Entity Authentication Scheme 

U V 

MacKey 

QEU 

QEV, MACMacKey(0216 || V || U || QEV || QEU || [Text1]), [Text1] 
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4. Each entity shall have decided which ANSI-approved MAC scheme to use as specified in 
Section 5.7. The length in bits of the keys used by the MAC scheme is denoted by 
mackeylen. 

5.3.1 Initiator Transformation 
U shall execute the following transformation to obtain evidence from V as to the actual 
involvement hereof in a real-time communication with U if U is the protocol’s initiator. U shall 
obtain an authentic copy of V’s identifier and an authentic copy of the key MacKey shared with 
V. 
 
Input: This routine does not take any input. 

Ingredients: The initiator transformation employs the challenge generation primitive in Section 
5.3 of ANSI X9.63 - 2001, challenge validation in Section 5.2, and uses the truncated 
HMAC function described in FIPS Pub #HMAC using as the hash function SHA-256 
described in  FIPS Pub 180-2. 

Actions: Entity authentication shall be established as follows: 

1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63 – 2001 to generate 
a challenge QEU for the parameters D. Send QEU to V. 

2. Then receive from V a challenge QEV’ purportedly owned by V, an optional bit string 
Text1, and a purported tag MacTag1’. If these values are not received, output ‘invalid’ and 
stop. 

3. Verify that QEV’ is a valid challenge for the parameters D as specified in Section 5.2. If 
the validation primitive rejects the challenge, output ‘invalid’ and stop. 

4. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string 
QEV’, the bit string QEU, and if present Text1: 

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]. 

5. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag 
checking transformation of the appropriate HMAC scheme previously specified. If the 
tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop. 

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the 
authentication of V. Otherwise, output ‘valid’, accept the authentication of V and accept V 
as the source of the bit string Text1 (if present). 
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5.3.2 Responder Transformation 
V shall execute the following transformation to provide evidence to U as to its actual 
involvement in a real-time communication with U if V is the protocol’s responder. V shall obtain 
an authentic copy of U’s identifier and an authentic copy of the key MacKey shared with U. 
 
Input: The input to the responder transformation is: 

1. A challenge QEU’ purportedly owned by U. 

Ingredients: The initiator transformation employs the challenge generation primitive in Section 
5.3 of ANSI X9.63 - 2001, challenge validation in Section 5.2, and uses the truncated 
HMAC function described in FIPS Pub #HMAC using as the hash function SHA-256 
described in  FIPS Pub 180-2. 

Actions: Entity authentication shall be established as follows: 

1. Verify that QEU’ is a valid challenge for the parameters D as specified in Section 5.2. If 
the validation primitive rejects the challenge, output ‘invalid’ and stop. 

2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63 – 2001 to generate 
a challenge QEU for the parameters D. Send QEU to V. 

3. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string 
QEV, the bit string QEU’, and, optionally, a bit string Text1: 

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]. 

4. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging 
transformation of the appropriate HMAC scheme previously specified. 

MacTag1 = MACMacKey(MacData1). 

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U the 
challenge QEV, if present the bit string Text1, and MacTag1. 

Output: If any of the above verifications has failed, then output ‘invalid’ and stop; otherwise, 
output ‘valid’. 
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5.4 Mutual Entity Authentication Scheme 
This section specifies the mutual entity authentication scheme. A MAC scheme is used to 
provide key confirmation. 
 
Figure 12 illustrates the messaging involved in the use of the full mutual entity authentication 
scheme. 

The scheme is ‘asymmetric’, so two transformations are specified. U uses the transformation 
specified in Section 6.12.1 of ANSI X9.63 – 2001 to obtain evidence from V as to the actual 
involvement hereof in a real-time communication with U and to provide similar evidence to V if 
U is the protocol’s initiator. V uses the transformation specified in Section 6.12.2 of ANSI X9.63 
– 2001 to provide evidence to U as to its actual involvement in a real-time communication with 
U and to obtain similar evidence from U if V is the protocol’s responder.  
 
The essential difference between the role of the initiator and the role of the responder is merely 
that the initiator sends the first pass of the exchange. 
 
If U executes the initiator transformation and V executes the responder transformation and if 
access to the shared key is restricted to U and V, then U and V will obtain mutual entity 
authentication. 
 
Prerequisites: The following are the prerequisites for the use of the scheme: 

1. Each entity shall have access to a bit string MacKey of length mackeylen bits to be used 
as the key. Each party shall have evidence that access to this key is restricted to the entity 
itself and the other entity involved in the entity authentication scheme. 

Figure 12 – Mutual Entity Authentication Scheme 

U V 

MacKey 

QEU 

QEV, MACMacKey(0216 || V || U || QEV || QEU || [Text1]), [Text1] 

MACMacKey(0316 || U || V || QEU || QEV || [Text2]), [Text2] 
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2. Each entity has an authentic copy of the system’s challenge domain parameters 
D=[minchallengelen, maxchallengelen]. 

3. Each entity shall be bound to a unique identifier (e.g. distinguished names). All 
identifiers shall be bit strings of the same length entlen bits. Entity U’s identifier will be 
denoted by the bit string U. Entity V’s identifier will be denoted by the bit string V. 

4. Each entity shall use the truncated HMAC scheme. The length in bits of the keys used by 
the MAC scheme is denoted by mackeylen. 

5.4.1 Initiator Transformation 
U shall execute the following transformation to obtain evidence from V as to the actual 
involvement hereof in a real-time communication with U and to provide similar evidence to V if 
U is the protocol’s initiator. U shall obtain an authentic copy of V’s identifier and an authentic 
copy of the key MacKey shared with V. 
 
Input: This routine does not take any input. 

Ingredients: The initiator transformation employs the challenge generation primitive in Section 
5.3 of ANSI X9.63 - 2001, challenge validation in Section 5.2, and uses the truncated 
HMAC function described in FIPS Pub #HMAC using as the hash function SHA-256 
described in  FIPS Pub 180-2. 

Actions: Entity authentication shall be established as follows: 

1. Use the challenge generation primitive in Section 5.3 of ANSI X9.63 - 2001to generate a 
challenge QEU for the parameters D. Send QEU to V. 

2. Then receive from V a challenge QEV’ purportedly owned by V, an optional bit string 
Text1, and a purported tag MacTag1’. If these values are not received, output ‘invalid’ and 
stop. 

3. Verify that QEV’ is a valid challenge for the parameters D as specified in Section 5.2. If 
the validation primitive rejects the challenge, output ‘invalid’ and stop. 

5. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string 
QEV’, the bit string QEU, and if present Text1: 

MacData1 = 0216 || V || U || QEV’ || QEU || [Text1]. 

5. Verify that MacTag1’ is the tag for MacData1 under the key MacKey using the tag 
checking transformation of the appropriate MAC scheme specified in Section 5.7. If the 
tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop. 
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6. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string 
QEU, the bit string QEV’, and optionally a bit string Text2: 

MacData2 = 0316 || U || V || QEU || QEV’ || [Text2]. 

7. Calculate the tag MacTag2 on MacData2 under the key MacKey using the tagging 
transformation of the appropriate HMAC scheme previously specified: 

MacTag2 = MACMacKey(MacData2). 

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send MacTag2 
and if present Text2 to V. 

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the 
authentication of V. Otherwise, output ‘valid’, accept the authentication of V and accept V 
as the source of the bit string Text1 (if present). 

5.4.2 Responder Transformation 
V shall execute the following transformation to provide evidence to U as to its actual 
involvement in a real-time communication with U and to obtain similar evidence from U if V is 
the protocol’s responder. V shall obtain an authentic copy of U’s identifier and an authentic copy 
of the key MacKey shared with U. 
 
Input: The input to the responder transformation is: 

1. A challenge QEU’ purportedly owned by U. 

Ingredients: The responder transformation employs the challenge generation primitive in 
Section 5.3 of ANSI X9.63 - 2001, challenge validation in Section 5.2, and uses the 
truncated HMAC function described in FIPS Pub #HMAC using as the hash function 
SHA-256 described in  FIPS Pub 180-2. 

Actions: Entity authentication shall be established as follows: 

1. Verify that QEU’ is a valid challenge for the parameters D as specified in Section 5.2. If 
the validation primitive rejects the challenge, output ‘invalid’ and stop. 

 
2. Use the challenge generation primitive in Section 5.3 of ANSI X9.63 - 2001 to generate a 

challenge QEU for the parameters D. Send QEU to V. 

3. Form the bit string consisting of the octet 0216, V’s identifier, U’s identifier, the bit string 
QEV, the bit string QEU’, and, optionally, a bit string Text1: 

MacData1 = 0216 || V || U || QEV || QEU’ || [Text1]. 
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4. Calculate the tag MacTag1 for MacData1 under the key MacKey using the tagging 
transformation of the appropriate HMAC scheme previously specified. 

MacTag1 = MACMacKey(MacData1). 

If the tagging transformation outputs ‘invalid’, output ‘invalid’ and stop. Send to U the 
challenge QEV, if present the bit string Text1, and MacTag1. 

5. Then receive from U an optional bit string Text2 and a purported tag MacTag2’. If this 
data is not received, output ‘invalid’ and stop. 

6. Form the bit string consisting of the octet 0316, U’s identifier, V’s identifier, the bit string 
QEU’, the bit string QEV, and the bit string Text2 (if present): 

MacData2 = 0316 || U || V || QEU’ || QEV || [Text2]. 

7. Verify that MacTag2’ is the valid tag on MacData2 under the key MacKey using the tag 
checking transformation of the appropriate HMAC scheme previously specified. If the 
tag checking transformation outputs ‘invalid’, output ‘invalid’ and stop. 

Output: If any of the above verifications has failed, then output ‘invalid’ and reject the 
authentication of U. Otherwise, output ‘valid’, accept the authentication of U and accept 
U as the source of the bit string Text2 (if present). 

5.5 Reconstructing the Public Key from an Implicit Certificate 
 
Recipient device U shall execute the following steps to reconstruct device V’s public key from 
the implicit certificate I. 
 
Input: Implicit certificate I = (IdV, D, IssuerInfo). 

Ingredients: The reconstruction employs as the hash function H the hash function SHA-2 of 
FIPS Pub 180-2. 

Actions: The public key shall be reconstructed as follows: 

1. Retrieve the public key WT corresponding to IssuerInfo. Output `invalid’ if there is no 
public key corresponding to IssuerInfo. 

2. Extract the components IdV and D from I and calculate the hash of their concatenation. h 
= H(IdV ||D). 

3. Convert the octet string h of the previous step into an integer e following the conversion 
routine of Step 5 in Section 4.1.3 of SEC1. 
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4. Convert the octet string D into an elliptic-curve point WD using the conversion routine 
specified in Section 2.3.4 of SEC1. 

5. Perform the following elliptic-curve point calculations to obtain the public key. 

WV = e WD + WT. 

Output: Device V’s public key WV. 
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6. Notation 
Cryptographic Building Blocks 
Block cipher Ek (with inverse function Dk) AES-128 
Block size B 128 
Symmetric key K Generated 
Cryptographic bit-strength keysize 128 
Initialization vector IV Generated 
Forward cipher function EncrK,IV (with inverse DecrK,IV) EK in CBC mode 
  EK in CTR mode 
Un-keyed Hash function  H SHA-256 
Message Authentication Code MACK HMAC using H, truncated to 

maclen bits 
-MAC length maclen keysize 
Challenge RND Generated 
-Challenge length keysize  
Binary elliptic curve E=(m,f(x),n,h,G,a,b) Koblitz curve K-283 
-Underlying binary field F2

m=F2[x]/(f(x))  
-Generating point  G  
-Order of generating point n  
-Cofactor of curve h 4 
-Elliptic curve equation Y2+XY=X3 + aX +b a=0, b=1 
Elliptic curve point P=(xP, yP)  
 P=(xP, ŷP) Point compression 
Global device identifier IdA 48-bit IEEE MAC Address 
Local device identifier IdA

* 8-bit piconet device address 
Static public key (of entity A) WA Static elliptic curve point 
Static private key (of entity A) SA such that WA=SA G Integer in range [1,n-1] 
Ephemeral public key (of A) QA Ephemeral elliptic curve 

point 
Ephemeral private key (of A) qA such that QA=qA G Integer in range [1,n-1] 
 
Remarks (key management for the WPAN security architecture) 
1. The key agreement protocol does not provide for evidence as to the intended usage of the 

shared secret key. In our context, the shared secret key K is a link key between Parties A and 
B, which serves as to protect the authenticity and confidentiality of key transport between A 
and B. Moreover, at any given instance of time, there is at most one link key between any 
pair of parties. Hence, the key usage is implied by the operational usage of the key agreement 
protocol and does not need to be explicitly bound to the key itself. 

2. Key transport in NTRU’s security architecture is always of one of the following types: 
broadcast key. Moreover, the key is always generated by the current PNC. Hence, group 
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membership, key usage attributes, key-life cycle attributes, associated cryptographic 
algorithms, and key identifiers are all implied by the (limited) security architecture. 

3. Data protection in NTRU’s security architecture is always of the following type: encryption 
+ integrity check hereover. 

4. Command protection in NTRU’s security architecture is always of the following type: 
integrity check value hereover. 


