Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: [Time Domain's Proposal for UWB Multi-band Alternate Physical Layer for 802.15.3a]
Date Submitted: [3 March, 2003]
Source: [Joy Kelly] Company [Time Domain Corporation]
Address [7057 Old Madison Pike, Huntsville, AL 35802 US]
Voice: [256-428-6576], FAX: [256-428-6785], E-Mail: [joy. kelly@timedomain.com]

Re: [802.15.3a Call for Proposals]

Abstract: [This presentation summarizes Time Domain's UWB Multi-band proposal for the 802.15.3a Alternate PHY standard.]

Purpose: [The presentation responds to the Call for Proposals issued by TG 802.15.3a, in consideration for the 802.15.3 Alternate PHY standard.]

Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Time Domain Corporation

Proposal for UWB Multi-band Alternate Physical Layer for TG 802.15.3a

Key Selection Criteria Performance Metrics for WPAN Alt PHY

- Cost
- Power consumption
- High data rates
- Channelization
- Performance in multipath
- Interference rejection
- Coexistence

Time Domain's Multi-band Solution

- Flexible spectrum use
- Time-frequency (TF) codes for multiple access (TFMA)
- Simple modulation schemes
- Standard Forward Error Correction (FEC)
- Graceful scalability with backward compatibility
- Strategies for increased multiple access capability in harsh environments

- ~520 MHz bands to best utilize spectrum
- 437 MHz band separation
- Adjacent band isolation: ~ 12 dB
 - Second band over is ~ 21 dB down
- Center frequencies chosen for ease of implementation

Signal Design Using 7 Bands

3.9 ns chip time
 Rectified cosine envelope

- Time-Frequency Multiple Access (TFMA) radio
- One frequency on the air at a time
 - Enables simplicity in receiver architecture
 - Provides low power solution

Time-Frequency Code Design 7 Bands

- Length 7 time-frequency codes
- Linear congruential design
- 6 codes in family
- At most one collision between any two length 7 codes (provides 17 dB code isolation)
- Code 0 2 3 Code 1 3 2 4 5 0 6 Code 2 0 3 2 5 6 Code 3 5 0 4 2 Code 4 5 3 0 1 Code 5 5 4 3 chip time
- Length 7 time-frequency codes provide good multipath resistance (approx 27 ns environment ring down)
- Yields 6 unique piconets

Data Modulation

- Use low order modulation for simplicity and reasonable dynamic range requirements
 - BPSK
 - QPSK
- Apply modulation on a per-chip basis
- Length 7 code (using all frequencies) yields raw data rates
 - 257 Mb/s for BPSK
 - 514 Mb/s for QPSK

Forward Error Correction (FEC)

- Convolutional encoder
 - − ½ rate
 - ¾ rate
- Constraint length 7
- Industry standard generating polynomials
- Spreads each bit across spectrum
- Multi-band method with per-band modulation enables weighting of each frequency band in soft decision

Modulation Schemes

- 8 modulation combinations defined
 - Fits within existing 3-bit PHY Header field

		Modulati	on Scher	Payload Bit Rate (Mb/s)				
Index	BPSK	QPSK	FEC	Frequency Integration	4 Bands	7 Bands	14 Bands	
0*	\checkmark		None	\checkmark	37	37	37	
3	\checkmark		1/2 Rate		73	128	257	
5		\checkmark	1/2 Rate		147	257	514	
7		\checkmark	None		294	514	1028	

*Mode 0 is base rate: used for all header /beacon / CAP signaling

Flexibility of Multi-band: Dynamic Band Management

- Monitor and report per-band performance
- Detect spectral problems, if any
- Four categories
 - Narrowband interferer
 - Channel fading
 - Nearby interfering piconet (near/far)
 - Multiple near-proximity piconets in extreme multipath

Solution for Narrowband Interference & Channel Fading

 Coordinate between DEVs within piconet to drop affected bands

Example: Band 4 dropped

Solution for Nearby Interfering Piconet & Multiple Piconets in Extreme Multipath

- TF codes provide 17dB code isolation between channels in freespace
- In extreme situations,
 additional isolation required
- Activate FDMA (frequency division multiple access) strategy
- Continue using same TF codes
- Return to TFMA when conditions permit

Scalability: Very High Data Rates

- Codes are re-used in upper frequency group
- Enables 14-band DEVs allowing > 1 GHz raw data rate
- Requires transmission and reception of two bands simultaneously

Scalability & Flexibility: Within a Piconet

- Signaling design enables DEVs of different capability within a piconet to communicate
- Band assessment, negotiation easily enabled via minimal MAC supplements
- Enables products of varying capabilities to be tailored for different applications

Submission

Scalability: Uncoordinated Piconets

- Code collision property holds for 14 bands
 - 1 collision in 7; 2 in 14
- Each piconet is independently configured
- Reconfiguring a given piconet does not adversely affect the other piconets

Example Implementation

Supporting Text Key Points Not Covered in Presentation

- Acquisition performance and timeline
- MAC enhancements
- Power consumption
- Packet definition
- More extensive analysis & simulation results

Summary Performance Results from Selection Criteria

- Link budget
- System Performance
- Simultaneous Operating Piconets
- Coexistence
- Interference Susceptibility
- Power Consumption
- Regulatory Impact

Link Budget

- Determine free space AWGN link budget margin for Multi-band radio
- Noise figure estimated at 7 dB
- Implementation loss estimated at 5 dB
- Receiver sensitivity is dependent on modulation type
- Data rates as high as 294 Mb/s for 4 band radio, 514 Mb/s for 7 band radio, and 1 Gb/s for 14 band radio

Link Budget Margin 7 Bands

Index	Modulation Scheme	Number of Bands	Payload Bit Rate	Link Budget Margin
0	BPSK, No FEC, no time integration, integrate all frequency bands	7	36.72	6.01 dB @ 10 m
1	BPSK, $\frac{1}{2}$ rate FEC, time integration = 2, no frequency integration	7	64.26	6.50 dB @ 10 m
2	QPSK, ³ ⁄ ₄ rate FEC, no time integration, integrate all frequency bands	7	55.08	7.85 dB @ 10 m
3	BPSK, ¹ / ₂ rate FEC, no time integration, no frequency integration	7	128.53	3.50 dB @ 10 m
4	BPSK, ³ / ₄ rate FEC, no time integration, no frequency integration	7	192.79	8.20 dB @ 4 m
5	QPSK, ¹ / ₂ rate FEC, no time integration, no frequency integration	7	257.06	8.44 dB @ 4 m
6	QPSK, ³ ⁄ ₄ rate FEC, no time integration, no frequency integration	7	385.60	5.19 dB @ 4 m
7	QPSK, no FEC, no time integration, no frequency integration	7	514.12	6.41 dB @ 2 m

Link Budget Margin 7-Band Radio

Simulator Description

- Operates primarily in the time domain
- Signals sampled at 100GHz
- Packet-oriented, i.e. for each packet:
 - Adjusts gain
 - Thresholds preamble to acquire, characterizes received signal for demodulation
 - Demodulates and check-sums Header and Payload
 - Decodes using Viterbi algorithm
- Describes an implementation model, not an ideal mathematical model:
 - 7 dB Noise Figure
 - ADC Quantization (5 bits)
 - Real-time AGC algorithm
 - Signal compression

- Realistic receive templates
- Non-ideal channel estimation
- Limited data-path precision
- Phase errors

System Performance

- Objective is to measure single-link performance in multipath
- Results simulated for all 400 CIRs in CMs 1-4
 - 10 distances simulated per CIR (from 24 m to 1 m)
 - 200 packets/run
 - 1024 octet payload
 - Results represent simulation of over 10 Gbits data
- Results presented for
 - 128 Mb/s and 257 Mb/s operation
 - No RAKE and two-finger RAKE

System Performance

128.4Mb/s - One Rake Finger

- 7 bands (skips UNII band)
- 100 CIR's from each of CM1 – CM4
- 200 packets
- 7dB Noise Figure
- Path-loss exponent of 2.0 in all cases
- BPSK, ½-rate FEC
- No rake

System Performance 128.4Mb/s – Two Rake Fingers

- 7 bands (skips UNII band)
- 100 CIR's from each of CM1 – CM4
- 200 packets
- 7dB Noise Figure
- Path-loss exponent of 2.0 in all cases
- BPSK, ½-rate FEC
- 2 Rake teeth

System Performance 256.7Mb/s – One Rake Finger

- 7 bands (skips UNII band)
- 100 CIR's from each of CM1 – CM4
- 200 packets
- 7dB Noise Figure
- Path-loss exponent of 2.0 in all cases
- QPSK, ½-rate FEC
- No rake

System Performance 256.7Mb/s – Two Rake Fingers

- 7 bands (skips UNII band)
- 100 CIR's from each of CM1 – CM4
- 200 packets
- 7dB Noise Figure
- Path-loss exponent of 2.0 in all cases
- QPSK, ½-rate FEC
- 2 Rake teeth

Simultaneously Operating Piconets

- Objective is to evaluate uncoordinated piconet channelization in multipath
- N = 1 interferer case examined here
- Five different sets of CIRs for the reference link are being used:
 - Freespace
 - To make simulation times feasible, representative channels from CMs 1-4 were chosen based on the quintiles of System Performance results:
 - CM1 representatives
 - CIRs 3, 59, 83, 81, and 40
 - CM2 representatives
 - CIRs 8, 56, 42, 31, and 58
 - CM3 representatives
 - CIRs 26, 39, 11, 60, and 62
 - CM4 representatives
 - CIRs 64, 79, 18, 52, 57

- These representative channels were used as the reference links for the SOP simulations
- The quality of the reference link will impact SOP performance. This procedure allows us to quantify the effect.

Choosing the Reference Channels

- Choice based on System Performance Results
- Link distance at which 8% PER was attained is recorded for each CIR in each CM.
- CDF of the 8% PER distance constructed
- Representative channels from each CM are the quintiles of the corresponding CDF

Simultaneously Operating Piconets

- Freespace reference link simulated against all 300 CIRs from CMs 1-3 as the interfering links.
- All other representative reference links were simulated against 60 interfering links from channel models 1-4.
 - 15 links from each of channel models 1-4.
- Reference link distance is set at half the 8% PER distance (providing notionally a 6 dB margin).
- Interfering link is walked in.
- PER is recorded as a function of the ratio of the interfering link distance to the reference link distance.

Simultaneously Operating Piconets N = 1 interferer

Simultaneously Operating Piconets N = 1 interferer

			RefLir	nk CM=t	reespac	e Ref	LinkDist	=10 M	lodSche	me=bps	sk 128.4	4 Mb/s
		100			 	[·	B LO	S 0-4	8%PER	when d	I _{Ratio} = 0).47
		90	{				👍 NL 🔶 NL	OS 0-4 OS 4-10	8%PE	∢ when R when	d _{Ratio} = (d _{Ratio} =	0.49 0.49
		80	\				- <u>-</u>	<u>+</u>			►	
Num. Bands	7	70 مو	<u>۱</u>	 								
Modulation	BPSK, ¹ / ₂ -rate FEC	00 Sat										
Data Rate	128.5 Mb/s	표 50 평 중 40		4								·
Reference Link	Freespace, 10 m	د 30										
Interfering Links	All CIRs in CMs 1-3	20		````	/			 				
-		10 0						·	·			
		0		1	i				1		i	i

Average performance in CMs 1-3

1 IntDist/RefDist

1.2

1.4

1.6

1.8

2

Ο

0.2

0.4

0.6

0.8

Simultaneously Operating Piconets N = 1 interferer

Performance CIR

Submission

CMs 1-4, CIRs 11-25

Simultaneously Operating Piconets N = 1 interferer

	R	efLink CM=L	.OS_0_to	_4 Re	fLinkDist=	=8.83	ModScl	heme=bp	sk 128.4	4 Mb/s
	100			÷-{-e	LOS O)-4	8%PER	when d _{Re}	= 0.6	3 -
	90				NLOS	0-4 4-10	8%PEF	when d _R אלאים ל	Ratio = 0.3	73 72
	80 -	A			_ Rms 2	4-10 25	8%PER	when d _R	Ratio ^{— 0.} atio ^{— 0.9}	IG -
	70		ų							
rate FEC	- Rate	\	¥							
S	Е 50- та									
59	ਤੱ _ਦ 40									
	30		I							
CIRs 1-15	20									
	10									
	0									
	rate FEC s 59 CIRs 1-15	Re 100 90 80 70 70 50 50 50 50 50 50 50 50 50 50 50 50 50	rate FEC 59 CIRs 1-15 RefLink CM=L 100 90 	RefLink CM=LOS_0_to 100 90 80 70 70 70 50 50 50 50 50 50 50 50 50 5	RefLink CM=LOS_0_to_4 Re	RefLink CM=LOS_0_to_4 RefLinkDist= 100	RefLink CM=LOS_0_to_4 RefLinkDist=8.83	RefLink CM=LOS_0_to_4 RefLinkDist=8.83 ModSci 100	rate FEC 30 70	RefLink CM=LOS_0_to_4 RefLinkDist=8.83 ModScheme=bpsk 128. 100

80th percentile System Performance CIR

1

1.2

1.4

1.6

1.8

2

Ο

0.2

0.4

0.6

0.8

Simultaneously Operating Piconets N = 1 interferer

Interpretation of SOP results

 Quality of reference link has more impact on SOP performance than nature of interfering channel:

Ref. link	Reference link from					
Sys. Perf. Rank	CM1	CM2	CM3			
100 th percentile	0.38	0.64	0.60			
60 th percentile	1.4	1.15	1.63			
20 th percentile	1.65	1.55				

Average 8% PER Distance Ratios from Simultaneously Operating Piconet Test

Strategies for Enhanced Channelization in Harsh Environments

- For significant fading on bands, drop the faded bands
- For very severe multipath and/or nearfar scenarios, use FDMA
- Both strategies yield dramatic improvement in SOP performance

Performance **before** dropping weak bands...

Performance after dropping weak bands...

RefLink CM=LOS_0_to_4 RefLinkDist=5.52 ModScheme=bpsk 73.37 Mb/s

Performance after FDMA...

Simultaneous Operating Piconet Simulation Results Summary

- Time-frequency codes as implemented provide 8-10 dB of isolation between piconets in freespace.
- Multipath will decrease piconet isolation.
- Piconet isolation is enhanced by dropping severely faded bands in a multipath environment.
- FDMA techniques are employed in near/far and severe multipath scenarios.

Coexistence

- Determined 802.15.3a impact to 802.11a, 802.11b, 802.15.1, 802.15.3, and 802.15.4
- Receiver impact based on AWGN analysis
- Minimize impact to selected wireless standards by modifying the FCC indoor/handheld emission mask
- Banded approach naturally reduces emissions in the selected bands thereby reducing the additional filtering needs in the 802.15.3a radio implementation

Coexistence Calculations

Wireless Service	802.11b	802.15.1	802.15.3	802.15.4	802.11 a
Frequency of Operation (GHz)	2.4-2.484	2.4 - 2.484	2.4-2.484	2.4-2.484	5.15-5.35
ModType	DSSS CCK	GFSK	DQPSK	OQSPK	BPSK
Wireless Receive Antenna Gain (dBi)	0	0	0	0	0
Wireless Service Rec. NF (dB)	10	23	12	15	10
Wireless Service NBW (MHz)	22	1	12	2.5	16.6
KT _{@25°C} (dBm/MHz)	-174	-174	-174	-174	-174
Wireless Service Rec. Noise Floor (dBm)	-90.58	-91.00	-91.21	-95.02	-91.80
Data Rate (Mb/s)	11	1	22	0.25	6
Wireless Service Implementation Loss (dB)	4	3	4	5	5
Wireless Service Coding gain (dB)	0	0	0	5	5.1
Wireless Service BER	1.00E-05	1.00E-05	1.00E-05	1.00E-05	1.00E-05
Wireless Service Eb/No @BER(dB)	10.6	18.0	12.0	10.0	9.6
Wireless Service Rec. Sensitivity (dBm) no UWB	-75.98	-70.00	-75.21	-85.02	-82.30
UWB EIRP (dBm/MHz) Minimum Criteria Mask (*1)	-61.3	-61.3	-61.3	-61.3	-53.8
UWB EIRP (dBm/MHz) Desired Criteria Mask (*1)	-65.9	-65.9	-65.9	-65.9	-64.3
FCC Handheld UWB EIRP Limit (dBm/MHz)	-61.3	-61.3	-61.3	-61.3	-41.3
Wireless Service Rec. Sensitivity (dBm) with Minumum Criteria UWB	-71.44	-69.62	-71.86	-83.03	-77.35
Wireless Service Rec. Sensitivity (dBm) with Desired Criteria UWB	-66.89	-68.68	-67.82	-79.91	-77.38
Notes:					
*1) The EIRP density values are the smallest values of a comparison be	etween the FCC ha	ndheld limit and th	e individual wirele	ess service coexiste	nce
calculations.					

Coexistence with IEEE 802.11a

Interference Susceptibility Analysis

- IEEE 802.11 a, IEEE 802.11 b, IEEE 802.15.4, Bluetooth and Microwave oven
 - Interference models were incorporated into the simulator and analog front-end attenuation factors were determined for each interferer
 - The simulations were carried out using a receiver template with a rectangular envelope
 - Signal linearity with very wide dynamic range was assumed
 - Simulation results using an analog front-end filter and with mixer limitations will be presented in May
- Generic In-Band Tone and Modulated Interferers
 - Interference models were incorporated into the simulator and the received power of the interferer was varied for different center frequencies
 - There was a good correspondence between the receiver template frequency response at the center frequency of the interferer and the observed performance
 - The analysis was done assuming the sub-band overlapping with the interferer will not be used
 - The effect of not dropping the overlapping sub-band was also analyzed

Interference Susceptibility due to IEEE 802.11a Interferer

Power consumption

Power Mode	Activity	Power Consumption
Idle	On state awaiting Tx and Rx commands	100 mW
Tx/Rx Prep	Preparing for Tx or Rx, programming registers	80 mW
Active Rx	Receiving @ 128.5 Mbit/sec	275 mW
Active RX	Receiving @ 257 Mbit/sec	325 mW
Active Tx	Transmitting (any data rate)	190mW
CCA	Clear channel assessment	225 mW
Power save	Power save mode	20 mW

Regulatory impact

- Banded radio flexibility can accommodate regulatory requirements of virtually any geopolitical region
- Radio will conform to all regions adopting US UWB regulations.
- Radio will meet projected regulatory requirements of Europe and Japan.

Conclusions

- Time Domain's Proposal
 - Is FCC compliant
 - Achieves data rate and range requirements
 - Enables low cost, low power solution
 - Exceeds channelization (6 channels)
 - Supplies robustness mechanisms for harsh environments
 - Provides flexibility in spectrum use
 - Defines growth path via number of bands
 - Requires minimal MAC supplements

Our multi-band approach enables a world-wide UWB WPAN standard that is scalable, flexible, and durable.

802.15.3a Early Merge Work

Time Domain will be cooperating with:

Intel Discrete Time General Atomics Wisair Philips FOCUS Enhancements

Objectives:

- "Best" technical solution
- ONE solution
- Excellent business terms
- Fast time to market

We encourage participation by any party who can help us reach these goals.