Abstract
Considering the interference condition between the initializing base station and the operation radio network near the IBS, we can find several scenarios. Study on these cases may be helpful for the standard development and make the WD easier to be understood by the working group.

Purpose
To include the scenario description into the ANNEX, after consolidation, we can go further base on same assumptions.

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Initialization scenario case study on interference situation

Wu Xuyong, Zhao Quanbo, Pan Zhong
Huawei Technologies Co., Ltd.

Overview

Considering the interference condition between the initializing base station and the operating radio network near the IBS, we can find several scenarios. Study on these cases may be helpful for the standard development and make the WD easier to be understood by the working group.

Reference:

[1] IEEE 802.16h-05/026: License-Exempt Task Group Meeting Minutes for Session #40 (2005-12-06)
[3] IEEE C802.16h-05/041: Treatment by OBS on error report in IBS_IPBC procedure (Wu Xuyong, Pan Zhong, Zhao Quanbo; 2005-11-09)
[4] IEEE 802.16h-05/003: Detailed Scope of IEEE 802.16h Standard

Discussion

See to the figure below:

Suppose OBS and SS1 is part of a operation network, SS1 have a stable air link with it’s BS before IBS start, OBS have a wired link Now the IBS comes into this area with wire link to the core network, IBS could contact OBS if he knows the address, unfortunately it does not know the IP address and probably there may be no regulatory server to ask for help. Notice here, the IBS will not have any SS attached before IBS itself has finished initialization. Based on list of assumptions referred to the working document, we can study on cases IBS is in and what kind of problems it may meet.

There is three kind of situation may exist in both SS2BS and BS2SS interference/signaling,

1) not able to be detected

2) interference detected but signaling not able to be decoded

3) interference detected and the signaling is decodable
We will use three kind of line with arrow to indicate these situation in the following figure during discussion.

- - - → Interference/signaling detectable and decodable
- - - → Interference/signaling detectable but not decodable
- - - → Interference/signaling not detectable

[note: based on the synchronization assumption, the BS/BS and SS/SS interference could be ignored.]

We can easily list out the possible cases by logical thinking as below:

Case1x: IBS interference/signaling can not detected by SS1
 Case1a: the IBS can not detect the signal from the operating network
 Case1b: the IBS can detect the signal from the operating network, but not decodable
 Case1c: the IBS can detect and decode the signaling from the operating network

Case2x: IBS interference/signaling can detected by SS1 but not decodable
 Case2a: the IBS can not detect the signal from the operating network
 Case2b: the IBS can detect the signal from the operating network, but not decodable
 Case2c: the IBS can detect and decode the signaling from the operating network

Case3x: IBS interference/signaling can detected and decoded by SS1
 Case3a: the IBS can not detect the signal from the operating network
 Case3b: the IBS can detect the signal from the operating network, but not decodable
 Case3c: the IBS can detect and decode the signaling from the operating network

We can discuss these cases one by one in the following:

Note:
1) The red tick here means one of the BS may know the IP address of another BS by receiving the signaling from the air; The red cross here stands for that the BS can not know the IP address of another BS by the signaling from the air.

2) The red dot line in one side means that from this side, the station can decode the signaling from the transmitter; The red dash line means from this side, the station can detect but can not decode; and the read solid line means the station can not sense the existence of the transmitter.

Case 1x:
In these cases IBS doesn’t interference with SS1, which means the OBS’s network is not necessary to contact IBS. So case 1x(1a/1b/1c) are not the target initialization scenarios in 16h.

Case 2x:

[Note: case 2c normally doesn’t happen for the same reason with case 1b & 1c.]

In these cases, IBS’s signaling could be detected by SS1, but SS1 could not decode the signaling. The problem here is, IBS may interfere to SS1, but SS1 can’t know who is the interferer, so it can not tell the OBS who is the interferer, so the OBS could not contact IBS for cooperation. These cases is the worst cases that 16h should deal with.
The reason for this problem is the difference of condition between decodable signaling and troubling interference. The condition could be measured in SNR requirement, the lower SNR required for the signaling, the lower probability to have this problem; another approach may help was introduced to the working document 15.2.1.1.3\cite{2} in the meetings before is shown in IEEE C802.16h-05/041\cite{3}, and we could easily understand it in the following figure.

![Diagram of signaling and interference](image)

No matter how hard we try, we could not absolutely get rid of the difference, so we can not totally get rid of this problems, all we could do is to make the probability as low as possible. Once in operating network all the interfered SSs could not decode the signaling, we have no chance to tell who is coming to interfere the network, and this operating network may need to switch/escape to another channel.

Case 3x:

These cases are most interesting cases that 16h need to make out the solution. We can see each one of the 3 cases here is a normal case, and we need to deal with them all. In order to find the common solution, we need to take the advantage of the common condition. That is, SS can decode the IBS signaling. It’s understood that if we don’t depends on the IBS signaling transmition, in case 3a and 3b, operation network will not be able to find IBS in the core network. And the only way we may enable the operating network to do this is using the SS to relay the signaling which is managed to contain the IP address information.

The security issue may be mitigated by checking the instant random key and frame numbering in the contact requirement message sent by the OBS. That may prevent the IBS being cheated by someone faraway or by someone which is not able to control or access the 16h air link. We may need to think about this approach if we have no other choice to meet the cooperation contact requirement in case 3a and 3b.

Proposed text change

To introduce the case study into annex. In this phase, we proposed to add a ANNEX clause, ANNEX 3. Coexistence scenarios for 16h. and section A3.1. BS initialization case study. And insert the content in the upper section into A3.1.