Project	IEEE 802.16 Broadband Wireless Access Working Group <http: 16="" ieee802.org=""></http:>
Title	Text remedies for credit token based co-existence protocol section
Date Submitted	2006-07-10
Source(s)	David GrandblaiseVoice: +33 (0)1 6935 2582Motorola LabsFax: +33 (0)1 6935 4801Parc Les Algorithmesmailto: david.grandblaise@motorola.comCommune de Saint Aubin91193 Gif sur Yvette, France
Re:	Recirculation of Working Group Review of Working Document 80216h-06_015
Abstract	This contribution provides remedies to comment #3 of the session #43's Working Group Review. The text remedies for credit token based co-existence protocol are proposed for section 15.6.2.2.6 of the working document [1].
Purpose	Text remedies to comment #3 of the session #43's Working Group Review.
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http: 16="" ieee802.org="" ipr="" notices="" patents="">.</http:></mailto:chair@wirelessman.org>

Text remedies for credit tokens based rental protocol section

David Grandblaise Motorola

Overview

This contribution suggests remedies to action items from session #43's Working Group Review, namely Comment 3 of [**Error! Reference source not found.**] – Correction of terminology in the credit token based rental protocol section. The text changes are intended to be included in the section 15.6.2.2.6 of the working document [1].

Specific editorial changes

This section provides a list of changes to the draft document.

Blue text represents specific editorial additions.

Red strikethrough text is to be deleted.

Black text is text already in the draft.

Bold italic text is editorial instructions to the editor.

Text proposal for section 15.6.2.2.6

Add the text below to update section 15.6.2.2.6

15.6.2.2.6 Negotiation between master NWs

Spectrum sharing between several networks (NW) can be achieved through the sharing of a common MAC frame between the different NWs as exampled by <u>Figure h44</u>. In such a MAC frame structure, dedicated portions (denoted as "master NW sub-frames") of the frame are periodically and exclusively allocated to a NW (denoted as the "master NW") respectively in the forward and reverse link. The terminology used hereafter defines a slave NW as a NW that may operate during the other master NWs sub-frames. With respect to this definition, the slave NW sub-frames are the time intervals operating in parallel of the master NWs sub-frames.

Additional flexibility can be provided by such a frame structure if the length of each master sub-frame (interference free sub-frame) can be dynamically adjusted as a function of the spatial and temporal traffic load variations of each NW as stated in section 15.2.1.1.

To achieve this, this section proposes the dynamic coordination of the frame structure sharing between BSs when several master -NWs compete to share this common shared MAC frame.

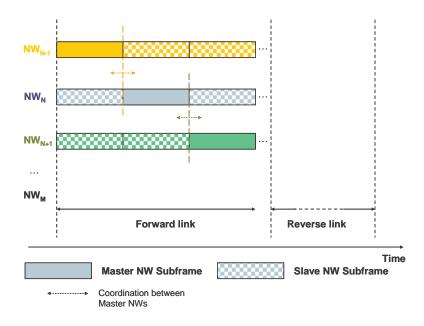


Figure h44: Example of TDD based MAC frame sharing structure between M NWs

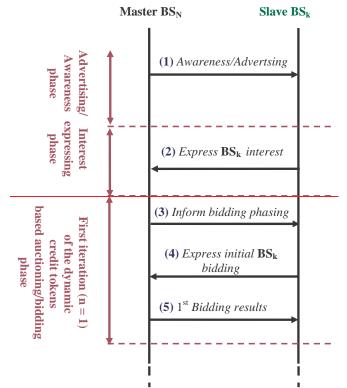
15.6.2.2.6.1 General principle

In order to solve contention access channel and resources scheduling issues between NWs, the first step consists in defining credit tokens and designing appropriate reserve price auctioning and biddingnegotiation mechanisms. Then, on the basis of the credit tokens based mechanisms usage, the second step consists in managing dynamically (temporally) the bandwidth requests and grants mechanisms for the sharing of the master sub frames within the common MAC frame.

Based on the credit tokens transactions (sellingassignment, purchase release and awarding), these two steps provide the mechanisms to enable spectrum efficiency and a fair spectrum usage in a real time fashion, while ensuring both the master and slave NWs QoS. These two steps enable to manage spectrum sharing between master NWs themselves. The result is the dynamic shaping of the MAC frame structure sharing as a function of the space time traffic intensity variations and the dynamic credit tokens portfolio account of the master NWs. The transaction mechanisms are detailed in the following sections.

15.6.2.2.6.2 Credit tokens assignment and usage principles

- Each NW is initially allocated with a given credit tokens account budget.
- Negotiation for spectrum sharing between NWs is based on credit tokens transactions.
- Credit tokens transactions occur dynamically between a credit tokens seller offeror (master NW owner of the radio resources during the active master sub-frame) and one or several credit tokens bidders requesters (the other master NWs).
- The negotiation occurs dynamically between master NWs to agree the length of each master sub-frame as a function of the spatial and temporal traffic load variations need of each master NW.


15.6.2.2.6.3 Negotiation between master NWs

15.6.2.2.6.3.1 Definition and notation

- BS_N denotes the BS belonging to the master NW_N.
- BS_k denotes the BS belonging to the slave NW_k.
- Each BS_k can dynamically makepropose a bidnumber of credit tokens $BS_CT^{(n)}_k$ at the nth iteration. This bidproposal corresponds to the amountnumber of credit tokens per time unit corresponding to the BS_k during the nth iteration of the auctioning/biddingnegotiation phase.
- Resource scheduling is carried out by an auction likeinspired mechanism. The auctionnegotiation type used for the scheduling is dynamic in time. Starting from the reserved price auction RPA minimum number of credit tokens required (MRCTN) by the master BS to its share radio resources, the price of auction the number -of credit tokens is successfully iteratively raised increased (at each iteration n) until the winning bidders requesters remain.

15.6.2.2.6.3.2 Dynamic credit tokens based scheduling cycle

The contribution proposes a The dynamic scheduling cycle aims at coordinating between one BS_N of master NW_N and several BS_k of different slave NW_k . For the sake of simplicity, the cycle is illustrated (Figure h 45 and Figure h 46) for one BS_N and one BS_k of a given slave NW_k . The cycle is composed of different phases, and each phase can be composed of several sequences as follows.

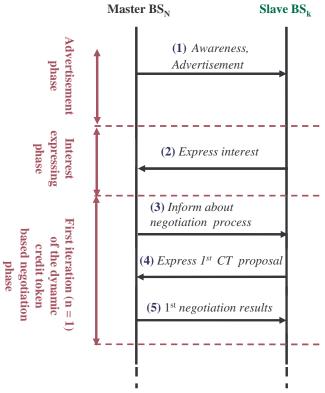
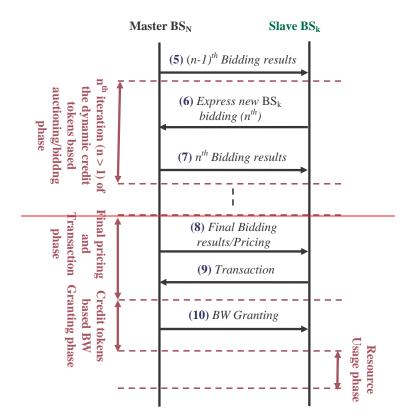



Figure 45: Dynamic (iterative) credit tokens based scheduling cycle – (sequences (1) to (5))

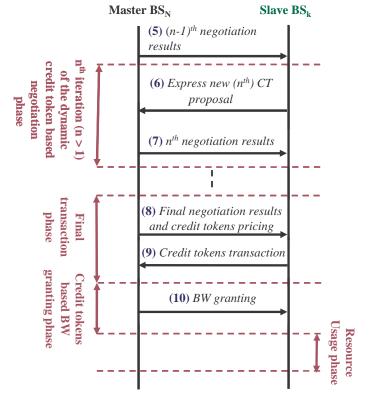


Figure 46: Dynamic (iterative) credit tokens based scheduling cycle – (sequences (5) to (10))

15.6.2.2.6.3.3 Negotiation mechanisms between master NWs

For each of the phase of the credit tokens based scheduling cycle presented in section 15.6.2.2.6.3.2, this section 15.6.2.2.6.3.3 describes the details of the enhanced mechanisms.

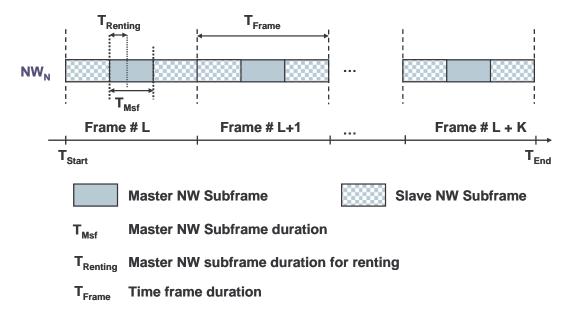


Figure h47: Simplified MAC frame structure illustrating master NW sub-frame renting principle and associated notations

Advertising/Awareness phase

This phase is composed of the single sequence (1) as follows:

- The master NW_N (sellerofferor) advertises that its periodic assigned master sub-frame is open for renting (Figure h47) from starting time T_{Start} to ending time T_{End} for a fraction ($T_{Renting}/T_{Msf}$) of its master sub-frame duration T_{Msf} . $T_{Renting} = T_{End Renting} T_{Start Renting}$.
- The master NW_N proposes a reserve price auction **RPA**-minimum number of credit tokens required (MRCTN) for this renting. The **RPA**MRCTN is expressed as a number of credit tokens per time unit.

Interest expressing phase

This phase is composed of the single sequence (2) as follows: each BS_k informs the master BS_N about its willingness (or not) to participate to the bidding negotiation. If the BS_k is interested, it communicates its id_k to the master BS_N .

First iteration (n = 1) of the dynamic credit tokens based auctioning/bidding negotiation phase

This phase is divided into 3 sequences as follows:

- In sequence (3), the master BS_N provides the following information to the slave BS_ks that have expressed the interest to participate to the bidding negotiation:
 - \circ T_{Start BiddingNegotiation}: time from which the biddingnegotiation phase will start,
 - $\circ T_{End \ \underline{BiddingNegotiation}}: time at which the \ \underline{bidding}negotiation \ phase \ will \ end \ (T_{End \ \underline{BiddingNegotiation}} < T_{Start}),$

<u>Note</u>: For this first iteration (n = 1), the initial $\{id_k\}$ is noted $\{id_k^{(1)}\}$.

- In sequence (4), each BS_k provides the following information to BS_N: **BID**CTP⁽¹⁾_k = {**BS**_CT⁽¹⁾_k, **x**_k, T_{Start k}, T_{End k}} where:
 - $\mathbf{CTP}^{(1)}_{\mathbf{k}}$ is the credit tokens proposal vector of $\mathbf{BS}_{\mathbf{k}}$ at the first (n = 1) iteration of the negotiation with the master $\mathbf{BS}_{\mathbf{N}}$. $\mathbf{CTP}^{(1)}_{\mathbf{k}}$ is composed of $\mathbf{BS}_{\mathbf{CT}}^{(1)}_{\mathbf{k}}$, $\mathbf{x}_{\mathbf{k}}$, $\mathbf{T}_{\mathbf{Start } \mathbf{k}}$ and $\mathbf{T}_{\mathbf{End } \mathbf{k}}$.
 - $BS_CT^{(1)}_k$ is the amountnumber of bided credit tokens per time unit proposed by BS_k for the first iteration,
 - x_k is the fraction of $T_{Renting}$ for which **bid**-**BS_CT**⁽¹⁾_k applies for,
 - $[T_{Start k}, T_{End k}]$ is the time interval for which bid-BS_CT⁽¹⁾_k applies for. $[T_{Start k}, T_{End k}] \subset [T_{Start}, T_{End}]$.
- In sequence (5), BS_N performs the following action:
 - $\circ \quad \text{Given the set of intervals } \{[T_{Start \ k}, \ T_{End \ k}]\} \text{ received from different } \frac{bidders}{bidders} \text{requesters } \{id^{(1)}{}_k\}, \\ \text{BS}_N \text{ partitions } \{[T_{Start}, \ T_{End}]\} \text{ into contiguous time segments } \{TS_m\}. \text{ Each } TS_m \text{ corresponds to a time window (integer number of } T_{Frame}) \text{ in which a subset of intervals of } \{[T_{Start \ k}, \ T_{End \ k}]\} \text{ overlap.}$
 - The different bidders requesters $\{id^{(1)}_{k}\}$ assigned to a given TS_m are identified by $\{id^{(1)}_{k,m}\}$. $\{id^{(1)}_{k,m}\}$ compete for each TS_m . Each involved bidder requester $id^{(1)}_{k,m}$ competes with his respective BIDCTP⁽¹⁾_k.
 - Then, for each TS_m , the master BS_N calculates the payoff $P^{(1)}_k = BS_CT^{(1)}_k * x_k * T_{Renting} * N_{Frame}_m$ for each bidderrequester k, and searches the subset $(\{id^{(1)}_{k,m}\}_{selected})$ of $\{id^{(1)}_{k,m}\}$ such as $sum(x_k) = 1$ and $sum(P^{(1)}_k)$ is maximal. $N_{Frame m}$ is the number of frames within TS_m ($N_{Frame m} = TS_m/T_{Frame}$).
 - For each TS_m , BS_N informs all $\{id^{(1)}_{k,m}\}$ about $P^{min, (1)}_m$ and $P^{max, (1)}_m$ where $P^{min, (1)}_m$ is the minimal payoff from $\{id^{(1)}_{k,m}\}_{selected}$ and $P^{max, (1)}_m$ is the maximal payoff from $\{id^{(1)}_{k,m}\}_{selected}$

during the first iteration. With this approach, each BS_k is directly informed whether it has been selected or not, and has some information on how far it is from $P^{\min, (1)}_{m}$ while still having some information on $P^{\max, (1)}_{m}$. This approach enables to keep the privacy of competing $\{id^{(1)}_{k,m}\}$ on TS_m .

nth iteration of the dynamic credit tokens based auctioning/biddingnegotiation phase

This phase is composed of 2 sequences as follows:

- In sequence (6):
 - o If $\mathbf{P^{(1)}_{k}} < \mathbf{P^{min, (1)}}_{m}$, this means that BS_{k} has not been selected for being granted the resources he has bided requested for during the first iteration n = 1. More generally speaking, for n>1, if $\mathbf{P^{(n-1)}_{k}} < \mathbf{P^{min, (n-1)}}_{m}$, this means that BS_{k} has not been selected for being granted the resources he has bided requested for during the $(n-1)^{th}$ iteration.
 - $\label{eq:starsest} \begin{array}{l} \circ \quad \mbox{If $P^{(n-1)}_k < P^{min, \, (n-1)}_m$ and if BS_k is still interest to be allocated with the additional resources he initially requested for, it can propose a new $BS_CT^{(n)}_k$ for the n^{th} iteration. Then, BS_k computes the new $P^{(n)}_k = BS_CT^{(n)}_k * x_k * T_{Renting} * N_{Frame \, m}$ where $x_k, T_{Renting}$ and $N_{Frame \, m}$ are fixed for all n on TS_m. \end{array}$
 - If $\mathbf{P}^{(n)}_{\mathbf{k}} > \mathbf{P}^{(n-1)}_{\mathbf{k}}$ and $\mathbf{P}^{(n)}_{\mathbf{k}} > \mathbf{P}^{\min, (n-1)}_{\mathbf{m}}$, BS_k expresses its interest to keep on participating in the biddingnegotiation with the new proposalbid $\mathbf{P}^{(n)}_{\mathbf{k}}$. In that case, it informs BS_N with its new (update) value of **BS_CT**⁽ⁿ⁾_k. In case $\mathbf{P}^{(n)}_{\mathbf{k}} = \mathbf{P}^{(n-1)}_{\mathbf{k}}$ or $\mathbf{P}^{(n)}_{\mathbf{k}} < \mathbf{P}^{\min, (n-1)}_{\mathbf{m}}$, BS_k leaves the biddingnegotiation phase and will not be granted with the additional resources he asked for.
- In sequence (7), BS_N updates $\{id^{(n-1)}_{k,m}\}\$ into $\{id^{(n)}_{k,m}\}$. Based on the new received biddings proposals $\{BS_CT^{(n)}_k\}\$ for each TS_m , the master BS_N calculates the new payoff $P^{(n)}_k = BS_CT^{(n)}_k * x_k * T_{Renting} *N_{Frame m}$ for each bidder requester k who still participates to the bidding negotiation. Then, for each TS_m , BS_N searches the subset ($\{id^{(n)}_{k,m}\}_{selected}$) of $\{id^{(n)}_{k,m}\}\$ such as $sum(x_k) = 1$ and $sum(P^{(n)}_k)\$ is maximal. Next, BS_N performs the same actions as in sequence (5): for each TS_m , BS_N informs all $\{id^{(n)}_{k,m}\}\$ about $P^{min, (n)}_{m}$ and $P^{max, (n)}_{m}$ where $P^{min, (n)}_{m}$ is the minimal payoff from $\{id^{(n)}_{k,m}\}\$ selected during the nth iteration.

Final pricing and credit tokens transaction phase Final negotiation results and credit tokens pricing

This phase is composed of two sequences as follows:

- In sequence (8):
 - As long as $T_{End \ BiddingNegotiation}$ $T_{Start \ BiddingNegotiation} > 0$ (i.e. the biddingnegotiation phase duration has not yet elapsed), n is increased and the credit tokens based biddingnegotiation phase mechanisms of the previous paragraph " n^{th} iteration of the dynamic credit tokens based auctioning/biddingnegotiation phase" are applied.
 - When $T_{End \ BiddingNegotiation} T_{Start \ BiddingNegotiation} = 0$, biddingnegotiation phase is over. None BS_k can propose a new bidcredit tokens proposal. $\{id^{(n \ final)}_{k,m}\}_{selected}$ is derived. At this point, BS_N derives the final credit tokens priceclearing price auction BS_CPA_k (expressed as a number of credit tokens per time unit) for each TS_m and each k from $\{id^{(n \ final)}_{k,m}\}$. For each k and m, BS_CPA_k can correspond to the $BS_CT^{(final)}_{k,m}$, or for example can follow another price auction derivation method.
- In sequence (9), eack BS_k is requested to provide $Pr_k = BS_CPA_k * x_k * T_{Renting} * N_{Frame m}$ credit tokens to BS_N to be allowed to use the resources it has been assigned won after the negotiation on its

corresponding TS_m . Provided that Pr_k does not exceed the credit tokens account budget of BS_k , the credit tokens transaction between BS_N and each BS_k is performed.

Credit tokens based bandwidth granting phase

This phase is composed of the single sequence (10). During this phase, BS_N grants the resource to each BS_k who has successfully performed the credit transaction operation in sequence (9).

Resource usage phase

After BS_k has been granted with the resources, BS_k can use them during during $x_k * T_{Renting}$ time unit of NW_N and for N_{Frame m} frames from the beginning on its corresponding TS_m.

References

[1] IEEE 802.16h-06/015: Part 16: Air Interface for Fixed Broadband Wireless Access Systems Amendment for Improved Coexistence Mechanisms for License-Exempt Operation, Working document; 2006-05-31
[2] 80216h-06_012r1: Working Group Review Commentary file from session #43.