Primitives Related to the Neighborhood Update procedure

Date Submitted: 2008-05-04

Source(s)
- Shulan Feng
 Hisilicon Tech. Co., LTD
 Bld.17, No.8, Dongbeiwang West Road, Hai-Dian District, Beijing, P. R. China
 Voice: +86-10-82829151
 Fax: +86-10-82829075
 e-mail to: fengsl@hisilicon.com

- Harry Bims
 Apple, Inc.
 1 Infinite Loop
 Cupertino, CA 95014
 Voice: 650-283-4174
 E-mail: harrybims@mac.com

- Mariana Goldhamer
 Alvarion Ltd.
 21A, Ha Barzel Street, Tel Aviv, Israel
 E-mail: mariana.goldhamer@alvarion.com

Re: IEEE 802.16-08/019 IEEE 802.16 Working Group Letter Ballot Recirc #29b: Announcement (2008-04-07)

Abstract
In response to comments addressing the existence of the IP transmission in the 802.16h Draft P802.16h/D4, a number of changes are proposed to enforce the primitives approach. This contribution defines the primitives related to the neighborhood update procedure.

Purpose
Accept.

Notice
This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy
The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

Primitives Related to the Neighborhood Update Procedure

Shulan Feng, Harry Bims, Mariana Goldhamer

HiSilicon, Apple, Alvarion

Introduction
In response to comments addressing the existence of the IP transmission in the 802.16h Draft P802.16h/D4, a number of changes are proposed to enforce the primitives approach. This contribution defines the primitives related to the neighborhood update procedure, including the Leaving Neighborhood Indication/Response primitive, Add Coexistence Neighbor Request/Response primitive, and Delete Coexistence Neighbor Request/Response primitive.

Proposed changes

15.6.1.5 Leaving Neighborhood Indication message (M-CX-LV-NBR-IND)

Function:
This primitive message is sent by the BS to the BSIS and/or its neighbor BSs in order to announce that it is leaving the neighborhood.

Semantics:
The parameters of the primitive are as follows:

M-CX-LV-NBR-IND

\[
\text{(Destination: BSIS or BS)}
\]

\[
\text{Attribute List:}
\]

\[
\text{BSID}
\]

\[
\text{CX Proxy IP address}
\]
Attributes are shown in *Leaving*.

Table h24—Leaving Neighborhood Indication primitive message attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSID</td>
<td>The BSID of the requesting BS.</td>
</tr>
<tr>
<td>CX Proxy IP address</td>
<td>Either one of CX Proxy IP address IPv4 or IPv6</td>
</tr>
</tbody>
</table>

When generated:

This primitive can be generated at the BS to announce to its neighbor BSs that it is leaving the neighborhood.

Effect of Receipt:

Upon receiving this primitive, the neighbor BS should response with M-CX-LV-NBR-RSP primitive.

Protocol:

I. When a new system enters the scene it listens to determine its neighbors. If it successfully hears one or more BSD or SSURF messages (or BS_NURBC in CSI), it creates a compilation of what is necessary for further coexistence mechanism between the new neighbor and itself and send to the new neighbor, and the necessary updating information, if any, will be sent to each of its neighbors in an Identify Coexistence Request message over the backhaul. Each neighbor responds with an Identify Coexistence Reply message containing their necessary information (which may be more complete than the new BS got over the air) and information on all of their neighbors whether they are neighbors of the new BS or not.

II. After the neighbors respond with the Identify Coexistence Reply message, they then send the information about the new BS to each of their neighbors using the Add Coexistence Neighbor Request message to inform their neighbors of the new BS. The neighbors respond with an Add Coexistence Neighbor Response message confirming receipt of the information.

III. Similarly, if a new system enters the scene, and there is another system which the new system cannot hear but the existing system can hear the new system, after a certain timeout without the new system initiating an Identify Coexistence Request/Response, the existing system initiates it as stated in I & II above.

IV. If a system goes a period of time without hearing a neighbor or otherwise determines a neighbor has disappeared (see V, below), it will send a Delete Coexistence Neighbor Request message to its neighbors indicating that it is removing the system from its list of neighbors. This does not affect whether those other systems still think it exists; only that it is no longer considered a neighbor of the first system.

V. If a system knowingly leaves the scene (different channel, intentional shutdown, etc.) it should courteously send a Leaving Coexistence Neighborhood Indication message to its neighbors who will respond with a Leaving Coexistence Neighborhood Reply message and should also send Delete Coexistence Neighbor Request message to its neighbors as in IV above.

These same messages could also be sent to known DB servers or BSIS if they exist. Obviously, the DB servers and BSIS wouldn't initiate the protocol since they can't hear BSD, SSURF, or BS_NURBC messages.
15.6.1.6 Leaving Neighborhood Reply message Response (M-CX-LV-NBR-RSP)

Function:

The primitive is issued by BSIS or BS to respond to M-CX-LV-NBR-REQ primitive. The BS's Leaving Neighborhood Indication with a Leaving Neighborhood Reply message.

Semantics:

The parameters of the primitive are as follows:

M-CX-LV-NBR-RSP

{
 Destination: BSIS or BS

 Attribute List:

 Null

}

No Attributes.

When generated:

This primitive shall be generated by the BS in response to an M-CX-LV-NBR-REQ primitive.

Effect of Receipt:

Upon receiving this primitive, the BS should update the list of its neighbor.

15.6.1.7 Add Coexistence Neighbor Request message (M-CX-ADD-NBR-REQ)

Function:

This message primitive is sent by the BS to the coexistence neighbor BS to request to add it to coexistence neighbor list.

Semantics:

Semantics:
The parameters of the primitive are as follows:

M-CX-ADD-NBR-REQ

```
( Destination: BS
Attribute List:
    BSID
    Contact IP address
    Channel Center Frequency
    Channel Width
    Channel Information
    Country Code
    Latitude
    Longitude
    Altitude
    Current Tx Power
    Operational Range
)
```

Attributes are shown in *Add Coe*.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSID</td>
<td>The BSID of the requested BS.</td>
</tr>
<tr>
<td>Contact IP address</td>
<td>The IP address of the requested BS or Coexistence Proxy of the requested BS.</td>
</tr>
<tr>
<td>Channel Center Frequency</td>
<td>in10kHz</td>
</tr>
<tr>
<td>Channel Width</td>
<td>in10kHz</td>
</tr>
<tr>
<td>Channel Information</td>
<td>The channel information of the requesting BS. Containing Modulation mode, alternative Channel Flag</td>
</tr>
</tbody>
</table>
When generated:

This primitive can be generated at the BS to request its coexistence neighbor BS to add it to coexistence neighbor list.

Effect of Receipt:

Upon receiving this primitive, the neighbor BS should respond with M-CX-ADD-NBR-RSP primitive.

15.6.1.8 Add Coexistence Neighbor Reply message Response (M-CX-ADD-NBR-RSP)

Function:

The primitive is issued by BS to responds to M-CX-ADD-NBR-REQ primitive.

The BSIS responds to the BS's Add Coexistence Neighbor Request with an Add Coexistence Neighbor Reply message.

Semantics:

The parameters of the primitive are as follows:

M-CX-ADD-NBR-RSP

\[\]

Destination: BS

Attribute List:

Null

When generated:

This primitive shall be generated by the BSIS or BS in response to an M-CX-ADD-NBR-REQ primitive.
Effect of Receipt:

Upon receiving this primitive, the BS should update the list of its neighbor.

No Attributes.

15.6.1.9 Delete Coexistence Neighbor Request message (M-CX-DEL-NBR-REQ)

Function:

This message is sent by the BS to the coexistence neighbor BS to request to delete from its coexistence neighbor list.

Semantics:

The parameters of the primitive are as follows:

M-CX-DEL-NBR-REQ

\[
\text{Destination: BS}
\]

Attribute List:

- BSID
- CX Proxy IP address

Attributes are shown in Add Coe.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSID</td>
<td>The BSID of the requested BS.</td>
</tr>
<tr>
<td>CX Proxy IP address</td>
<td>Either one of CX Proxy IP address IPv4 or IPv6</td>
</tr>
</tbody>
</table>

When generated:

This primitive can be generated at the BS to request its coexistence neighbor BS to delete it from the coexistence neighbor list.

Effect of Receipt:
Upon receiving this primitive, the neighbor BS should respond with M-CX-DEL-NBR-RSP primitive.

15.6.1.10 Delete Coexistence Neighbor Reply message Response (M-CX-DEL-NBR-RSP)

Function:

The primitive is issued by BS to responds to M-CX-DEL-NBR-REQ primitive.

Semantics:

The parameters of the primitive are as follows:

M-CX-DEL-NBR-RSP

{ Destination: BS
 Attribute_List:
 Null }

When generated:

This primitive shall be generated by the BSIS or BS in response to an M-CX-DEL-NBR-REQ primitive.

Effect of Receipt:

Upon receiving this primitive, the BS should update the list of its neighbor.

The BSIS responds to the BS's Delete Coexistence Neighbor Request with a Delete Coexistence Neighbor Reply message.

No Attributes.