Corrections for AAS Preambles in OFDMA PHY

This contribution introduces corrections to the definitions of the AAS preambles in the OFDMA PHY

Purpose
Adopt into P802.16d/D5 corrigenda

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Corrections for AAS Preambles in OFDMA PHY
Todd Chauvin, Dave Pechner, Doug Dahlby

1 Problems with the current AAS definition

The construction of the AAS preambles is not well defined.

2 Outline of proposed solution

The construction of AAS preambles based on the currently defined downlink preambles is clarified. Specific text changes are presented in the next section.

3 Proposed Text Changes

8.4.4.6.3 AAS Downlink Preamble

The AAS-DLFP is preceded by an AAS downlink preamble. In addition, the “Preamble Presence” field of the AAS_DLP indicates the presence of an AAS downlink preamble on any downlink allocation made by the DLFP. An AAS downlink preamble is formed by appropriately combining different preamble sequences defined in section 8.4.6.1.1. An AAS allocation could be in the FUSC/PUSC/AMC allocation and therefore, depending on the type of allocation, a preamble may span more than one original preamble sequence defined in section 8.4.6.1.1. In AMC allocation, the AAS downlink preamble occupies 9 subcarriers in each bin of the subchannels in AAS operation. The AAS down link preamble number, K, is derived from the AAS beam index carried by the AAS_DLFP(), and is limited to maximum 16 beams per segment (mainly in switching beams approach). When using the cyclic frequency shift preamble defined in 8.4.5.3.11, beams which use the same subchannels at the same time instance shall use a different AAS down link preamble number (K).

8.4.4.6.4 AAS Uplink Preamble

The “Preamble Presence” field of the AAS_DLP indicates the presence of a preamble on any uplink bandwidth allocation made by the DLFP. The “Uplink_Preamble_Config” field indicates the size of the AAS uplink preamble. In the PUSC region, the AAS uplink preambles occupy 4 subcarriers and 1/2/3 symbols. The basic AAS preamble (4 subcarrier x 1 symbol for PUSC or 9 subcarrier x 1 symbol for AMC or 3 subcarrier x 1 symbol for optional PUSC) is derived from the preambles defined in section 8.4.6.1.4 similar to the downlink. In AMC allocation, the AAS uplink preamble occupies 9 subcarriers in each bin of the subchannels and 1, 2 or 3 symbols as specified in the AAS_DLP.

[Replace Sections 8.4.4.6.3 and 8.4.4.6.4 with the following section:]

The AAS-DLFP is preceded by an AAS downlink preamble of one symbol duration. All other bursts within the AAS DL and UL zones have preambles whose duration are specified by the “Uplink_preamble_config” field of the AAS_UL_IE and “Downlink_preamble_config” fields of the AAS_DL_IE. These fields will be consistent with the same fields of the AAS_DLFP if present. In the case the AAS DL Zone is using the
PUSC permutation, the “Downlink_preamble_config” shall always be set to an integer number of slot durations (i.e. 0 or 2 symbols). The structure of the preambles are as specified in sections 8.4.4.6.3.1 and 8.4.4.6.3.2 for the downlink and uplink, respectively. The AAS preamble number, K, is equal to the AAS beam index carried by the AAS DLFP() or the Preamble Shift Index defined in the AAS DL IE and AAS UL IE. The BS must ensure these values are consistent. When using the cyclic time / frequency shifted preamble defined in 8.4.5.3.11 and 8.4.5.4.14, beams which use the same subchannels at the same time instance shall be configured to use a different AAS preamble number (K).

8.4.4.6.3.1 AAS Downlink Preamble
TBD

8.4.4.6.3.2 AAS Uplink Preamble
TBD