Project	IEEE 802.16 Broadband Wireless Access Working Group [http://ieee802.org/16]
Title | Corrections to STC transmission in OFDM PHY
Date Submitted | 2004-11-02
Source(s) | Atul Salvekar
Baraa Al-Dabagh
Hassan Yaghoobi
Intel Corporation
CHP3-105
350 East Plumeria Dr.
San Jose, CA 95134
Re: | Supporting document for call for contribution for corrigendum document
Abstract | In P802.16 REVd/D5 [1], an STC Preamble is only mandatory if there is an STC allocation in the frame. However, in order to get accurate maintenance values, for example power, an additional precursor STC preamble should occur in a preceding frame. In order to alleviate the situation, it is recommended that if there is an STC allocation in frame K and there is no STC allocation in the preceding frame, K-1, then the BS must transmit an STC preamble as the last allocation in the preceding frame, i.e. frame K-1. The issue becomes even more severe in mobile situations where the channel variations can occur more rapidly. A second recommendation is made to address a potential confusion on where the STC allocation shall be spelled out. The modifications have been approved and included in 802.16e [2].
Purpose | Adoption in P802.16-2004/Cor 1
Notice | This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures | The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures [http://ieee802.org/16/ipr/patents/policy.html], including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair [mailto:chair@wirelessman.org] as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site [http://ieee802.org/16/ipr/patents/notices].
1. Introduction

In 802.16Revd/D5 [1], the STC Downlink frame structure includes a STC DL preamble. By utilizing the transmitted STC preamble in the same frame, it may be difficult to perform channel estimation for data reception and at the same time optimize other system parameters, for example operating power setpoint for the STC receiver.

The problem exists in both fixed and mobile cases but the issue becomes more severe in highly mobile environment since the channel variations occur more quickly. For this reason we propose sending an extra STC preamble in the preceding frame as described in Section 2. In addition to the DL preamble, because of the way the frame structure is defined, it turns out that it is difficult to parse the STC MAP if it exists. Therefore, we propose a new STC FCH, which is the same format as the FCH in normal transmission.

As an example, consider the case of two Rayleigh fading paths with equal average power. If \(P_1 \) is the instantaneous power of path 1 and \(P_2 \) is the instantaneous power of path 2, then the Figure 1 shows the distribution of the power of \(P_1 \) vs. \((P_1+P_2) \).

![Figure 1: The probability that x dB greater than P1 is less than (P1+P2)](image)

There is a very interesting mathematical fact that this probability can be shown to exactly equal \(10^{-x/10} \). This is shown in the following derivation:
The contribution is organized as follows. In Section 2, describes the requisite changes to the 802.16e/D3 text for the DL preamble [2]. Section 3 describes the change to the STC MAP. Sections 4 and 5 are conclusions and references.

2. STC Preamble

Suppose that during non-STC portions of the frame, the BS transmits on antenna 1. The SS sets operating values based on the DL preamble. Once STC enabled transmission begins, both antenna 1 and antenna 2 transmit, which may make these operating values faulty. This can result in incorrect decoding of the data. For instance the power from a single antenna could be over 20 dB less that that of a second antenna for uncorrelated Rayleigh Fading Channels. In this case, instability can exist as expressed in Figure 1.

Thus, we suggest that in the case that there is STC encoded traffic in a specific frame, K, without STC encoded data traffic on the previous frame, K-1, the preceding BS DL subframe, K-1, contain an STC zone, in which the STC zone consists of only an STC preamble and with no FCH-STC, DL-MAP and STC data. The SS will be able to determine that there is no STC data allocation in frame K-1 STC Zone by determining that there has been no STC zone in the previous frame K-2. This is expressed in for TDD transmission in Figure 2.
3. STC FCH

Since a downlink map may be sent in both the normal and STC section of a frame there can be a confusion on where should the STC allocation shall be spelled out. Thus we propose that the following be adopted: The FCH STC shall be changed in format to look like the normal FCH DLFP IEs with the restriction that there cannot be another STC region. The following figure illustrates that.

4. Proposed Changes

Proposed Text Change:

In Section 8.3.5.1 of 802.16REVd/D5, pg. 450 add the following text in blue at the end of the third paragraph as indicated by the surrounding text:

The STC zone starts from a preamble and an STC encoded FCH-STC burst, which is one symbol with the same payload format as specified in Table 239-xxx. The FCH-STC burst is transmitted at BPSK rate _-. It is followed by one or several STC encoded PHY
bursts. The first burst in the STC zone may contain a DL-MAP applicable only to the STC zone. If DL-MAP is present, it shall be the first MAC PDU in the payload of the burst. The DL map if sent in Burst 1 of the normal frame shall not describe any allocations in the STC region. In the case that there is an STC encoded traffic in a specific frame, K, without STC encoded data traffic on the previous frame, K-1, the preceding DL subframe, K-1, shall contain an STC zone at the end of the subframe, in which the STC zone consists of only an STC preamble without FCH-STC, DL-MAP and STC data. The SS will be able to determine that there is no STC data allocation in frame K-1 STC Zone by determining that there has been no STC zone in the previous frame K-2.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Size</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC_DL_Frame_Prefix_Format() {</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for (n=0; n < 5; n++) {</td>
<td>4 bits</td>
<td></td>
</tr>
<tr>
<td>Rate_ID/ DIUC</td>
<td></td>
<td>For all IEs this field is DIUC that defines the burst profile of the corresponding burst.</td>
</tr>
<tr>
<td>Preamble present</td>
<td>1 bit</td>
<td>If ‘1’, preamble is placed before the burst.</td>
</tr>
<tr>
<td>Length</td>
<td>11 bits</td>
<td>Number of OFDM symbols in the burst.</td>
</tr>
<tr>
<td>}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCS</td>
<td>8 bits</td>
<td>An 8-bit Header Check Sequence; calculated as specified in Table 5</td>
</tr>
</tbody>
</table>

5. Conclusions:
To build a robust 802.16 system with STC Transmission, it is important to ensure that mechanisms exist to allow for reception in even the most pathological cases. We have proposed changes to the standard that solve two issues. We have proposed that an STC preamble to be present in the prior frame in the case that there is an STC allocation in the current one and we also propose adjusting the STC FCH to resolve ambiguity in the STC MAP elements.

References: