Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16 >					
	Efficient transmission of DCD and UCD message					
Date Submitted	2004-11-16					
Source(s)	Geunhwi Lim Mail to : Jungje.son@samsung.com					
	Jung Je Son					
	Aeri Lim					
	Sungwook Park					
	Yeongmoon Son					
	Samsung Electronics Co., Ltd.					
	Dong Suwon P.O.Box 105					
	416, Maetan-3dong, Yeongtong-gu,					
	Suwon-city, Gyeonggi-do, Korea 442-600					
Re:						
Abstract	Clarifications for H-ARQ region					
Purpose	Adopting of proposed method into P802.16e					
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion					
110000	and is not binding on the contributing individual(s) or organization(s). The material in this					
	document is subject to change in form and content after further study. The contributor(s					
) reserve(s) the right to add, amend or withdraw material contained herein.					
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material					
Release	contained in this contribution, and any modifications thereof, in the creation of an IEEE					
	Standards publication; to copyright in the IEEE's name any IEEE Standards publication					
	even though it may include portions of this contribution; and at the IEEE's sole discretion					
	to permit others to reproduce in whole or in part the resulting IEEE Standards publication.					
	The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.					
Patent Policy and	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0)					
Procedures	http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may					
	include the known use of patent(s), including patent applications, if there is technical justification					
	in the opinion of the standards-developing committee and provided the IEEE receives assurance from					
	the patent holder that it will license applicants under reasonable terms and conditions for the purpose					
	of implementing the standard."					

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org > as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices>.

Efficient transmission of DCD and UCD message Jung Je Son, Aeri Lim, Sungwook Park SAMSUNG ELECTRONICS

1. Introduction

DCD (Downlink Channel Descriptor) and UCD (Uplink Channel Descriptor) are MAC management messages transmitted on the broadcast connection. UCD and DCD contain TLV encoded values and the length of UCD and DCD is quite long. The UCD message length may be over 280 bytes and DCD message length may be over 200 bytes.

MAC management messages on broadcast, basic or initial ranging connection shall be neither fragmented nor packed. Therefore, even a long MAC management message shall be transmitted at once without fragmentation. The resource allocation for long DCD/UCD message is burden for BS, and the transmission is delayed if there is no available bandwidth. Moreover, available resource in a frame may be less than the required to transmit DCD/UCD. Supposed that OFDMA system with 2ms frame duration and 10MHz bandwidth selects CP duration of 1/4 and FFT size of 2048, the maximum number of symbols in a frame is less than 8. When 1/2 QPSK and 6 repetition coding is used, the maximum resource for data transmission in a frame is 224 bytes totally. Therefore, the transmission of UCD or DCD could not be supported, which means the system will not work.

When one or more values in DCD are changed, BS should increase the CCC (Configuration Change Count) value by one and build a message with the changed information. MSS should receive DCD or UCD to maintain, or initiate the connectivity to network. Although MSS needs only modified information, it receives whole DCD or UCD messages.

2. Proposed remedy

This contribution suggests that DCD and UCD message may be partitioned like MOB_NBR-ADV. In addition, BS may transmit the modified DCD/UCD message before it transmits unmodified DCD/UCD message.

When some of information in DCD or UCD is changed, BS classifies it by modified information and unmodified information. MSS connected to the network may need only modified information, although MSS initiating the network entry needs all DCD/UCD information not only modified but also unmodified.

BS transmits partitioned DCD/UCD in several frames, if bandwidth is not enough. In this situation, modified information should be transmitted in beginning frames and unmodified information should follow. The CCC should be the same in these frames.

The proposed method works as follow.

Partitioning Status Index in UCD/DCD tells whether the message is partitioned, and whether the partition contains modified information or unmodified information. The end of partition can be identified by partitioning count. The partitioning count starts from 1 and increases by one. Partitioning count 0 means last partition. The partitioning count sets to 0 for the last modified UCD/DCD information and for the last unmodified UCD/DCD information.

3. Proposed text change

[Remedy1]

[Remedy1a: Modify the table 15 in section 6.3.2.3.1]

Syntax	Size	Notes
DCD_Message_Format() {		
Management Message Type = 1	8 bits	
Downlink channel ID	8 bits	
Configuration Change Count	8 bits	
TLV Partitioning Status Index	4 bits	0: No partition
		1: message with the partition containing
		some modified information. Unmodified
		information can follow.
		2: message with only unmodified
		<u>information</u>
TLV Partitioning Count	4 bits	0: last partition
		1: first partition
		BS increases this value by one from 1.
		If there are 7 partitions, 3 for modified
		information and 4 for unmodified
		information, partition counts are
		1,2,0,1,2,3,0
TLV encoded information for	Var	TLV specific
the overall channel		
Begin PHY Specific Section {		See applicable PHY section
For(i=1; i<=n;i++) {		For each downlink burst profile 1 to n
Downlink_Burst_Profile		PHY specific
}		
}		
}		

[Remedy 1b: Modify the table 17 in section 6.3.2.3.3]

Syntax	size	Notes
UCD_Message_Format() {		
Management Message Type =	8 bits	

0		
Configuration Change Count	8 bits	
TLV Partitioning Status Index	4 bits	0: No partition
		1: message with the parttion containing
		some modified information. Unmodified
		information can follow.
		2: message with only unmodified
		<u>information</u>
TLV Partitioining Count	4 bits	0: last partition
		1: first partition
		BS increases this value by one from 1.
		If there are 7 partitions, 3 for modified
		information and 4 for unmodified
		information, partition counts are
		1,2,0,1,2,3,0
Raging Backoff Start	8 bits	
Ranging Backoff End	8 bits	
Request Backoff Start	8 bits	
Request Backoff End	8 bits	
TLV encoded information for	Var	TLV specific
the overall channel		
Begin PHY Specific Section {		See applicable PHY section
For(i=1; i<=n; i++) {		For each uplink burst profile 1 to n
Uplink_Burst_Profile		PHY specific
}		
}		
}		

TLV Partitioning Status Index

This field indicates the Partitioning status of current TLV information in DCD/UCD.

TLV Partitioning Count

This field is increased by one for each partition. It is set to 0 for the last partition

[Remedy 2: Modify line 59 at page 43, section 6.3.2.3 as following:]

MAC Management messages on the Basic, Broadcast, and Initial Ranging connections shall neither be fragmented nor packed.

Pros.: Very Simple.

<u>Cons.</u>: Until every fragmentations are received, MSS cannot decode it.

There are not many message transmitted with Broadcast CID in TGd

- DL-MAP/UL-MAP: no need to be fragmented. It should be transmitted in a frame without fragmentation.
- UCD/DCD: Need for correction. Very big size as marked in the contribution.
- FPC : Already be able to partition to fit in a frame
- Mesh related message: I don't know.

Remedy3

[Remedy3a: Modify the table 15 in section 6.3.2.3.1 as following]

Syntax	<u>Size</u>	<u>Notes</u>
DCD_Message_Format() {		
Management Message Type = 1	8 bits	
Downlink channel ID	8 bits	
Configuration Change Count	8 bits	
Total number of partitioning	4 bits	
Partitioning Count	4 bits	Start from 0 to total number of
		partitioning -1
TLV encoded information for	<u>Var</u>	TLV specific
the overall channel		
Begin PHY Specific Section {		See applicable PHY section
For(i=1; i<=n;i++) {		For each downlink burst profile 1 to n
Downlink_Burst_Profile		PHY specific
1		
1		
1		

[Remedy 1b: Modify the table 17 in section 6.3.2.3.3]

<u>Syntax</u>	<u>size</u>	Notes
UCD Message Format() {		
Management Message Type =	8 bits	
<u>0</u>		
Configuration Change Count	8 bits	
Total number of partitionnig	4 bits	
Partitioning Count	4 bits	Start from 0 to total number of
		partitioning -1
Raging Backoff Start	8 bits	
Ranging Backoff End	8 bits	
Request Backoff Start	8 bits	
Request Backoff End	8 bits	

TLV encoded information for	<u>Var</u>	TLV specific
the overall channel		
Begin PHY Specific Section {		See applicable PHY section
For(i=1; i<=n; i++) {		For each uplink burst profile 1 to n
<u>Uplink_Burst_Profile</u>		PHY specific
1		
1		
1		