Project
IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title
Clarifications to permutations based on IDCell parameter

Date Submitted
2004-11-17

Source(s)
Yigal Leiba
Yossi Segal
Zion Hadad
Itzik Kitroser
Runcom Ltd.
Sean Cai
Jason Hou
Jing Wang
ZTE San Diego Inc.
Yuval Lomnitz
Intel

Voice: +972-3-9528440
Fax: +972-3-9528805
yigall@runcom.co.il
yossis@runcom.co.il
zionh@runcom.co.il
Itzikk@runcom.co.il
saci@ztesandiego.com
jhou@ztesandiego.com
jwang@ztesandiego.com
yuval.lomnitz@intel.com

Re:
802.16REVd/D5-2004

Abstract
IEEE 802.16d D5 Draft Corrigenda

Purpose
Clarifications to permutations based on IDCell parameter

Notice
This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release
The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent Policy and Procedures
The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) <http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-developing committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.
Clarifications to permutations based on IDCell parameter

1 Statement of the problem
In sections 8.4.6.1.2.1.1 and 8.4.9.4.1 the IDcell parameter is used for several different permutations, which are not connected or dependent on each other. In addition, the IDcell parameter may sometime be defined by the frame preamble, and some other times by the TD_Zone_IE().

2 Proposed solution
Clarify for each permutation what is the correct IDCell to use, and at one instance change the parameter name to reduce some of the overloading it carries.

3 Specific text changes

[1. On page 526, line 12, modify the text as follows:]
Broadcast/Multicast/Soft-Handoff Zone indicator – indicates that in this zone a transmission from several sources (using same information) is performed.

Note: When the ‘Use All SC indicator’ is set to 0, and the TD_ZONE_IE() indicates switch to a PUSC zone, the major groups used are as indicated in the FCH.

[1. On page 619, line 52, modify the text as follows:]

"b10..b6 = Five least significant bits of IDcell as indicated by the frame preamble in the first downlink zone, or and DL_PermBase following TD_Zone_IE(), except for zones marked by ‘Use all SC indicator=1’, where these bits shall be set to 1, in the downlink. Five least significant bits of UL_IDcell in the uplink.

b5..b4 = Set to the segment number + 1 as indicated by the frame preamble in the first downlink zone, and or the 3-2LS bits of IDcell_PRBS_ID as indicated by the TD_Zone_IE() in the downlink, except for zones marked by ’Use all SC indicator=1’, where these bits shall be set to 1. Three Two least-most significant bits of UL_IDcell in the uplink."

b3..b0 = In the downlink four least significant bits of symbol offset from the first data preamble symbol in the frame (i.e. the symbol in the frame in which the DL-MAP starts, first PUSC symbol after the preamble is indexed 1). In the uplink set to the result of XOR (bit wise) operation between the four least significant bits of symbol offset from the first data preamble symbol in the frame (i.e. the symbol in the frame in which the DL-MAP starts, first PUSC symbol after the preamble is indexed 1) and the four least significant bits of the Frame Number.

[2. On page 567, line 26, modify the text as follows:]

"2) Renumbering the physical clusters into logical clusters using the following formula: LogicalCluster = RenumberingSequence((PhysicalCluster+13*IDcellPUSC_DL_PermBase _PERM_BASE) mod 120). In the first PUSC zone of the downlink (first downlink zone) or when the 'Use all SC indicator=0' in the TD_Zone_IE(), the default used IDcellPUSC_DL_PermBase is 0, otherwise, it is equal to the IDCell parameter in the TD_Zone_IE(). In the first PUSC zone of the downlink (first downlink zone) the default used IDcell_DL_PermBase is 0. When the 'Use all SC indicator=0' in the TD_Zone_IE(), DL_PermsBase is replaced with 0. For All other cases DL_PermBase parameter in the TD_Zone_IE() shall be used."

[3. On page 567, line 36, modify the text as follows:]

"4) Allocating carriers to subchannel in each major group is performed by first allocating the pilot carriers within each cluster, and then taking all remaining data carriers within the symbol and using the same procedure described in 8.4.6.1.2.2.2 (with the parameters from Table 308, using the PermutationBase appropriate for each major group, PermutationBase12 for even numbered major groups and PermutationBase8 for odd numbered major groups) to partition the subcarriers into subchannels containing 24 data subcarriers in each symbol. Note that IDcell used for the first PUSC zone is 0 the preamble IDcell, otherwise a PUSC zone shall use the IDCell_DL_PermBase parameter in the TD_Zone_IE()."

[4. On page 505, line 42, modify the text as follows:]

“After decoding the DL_Frame_Prefix message within the FCH, the SS has the knowledge of how many and which subchannels are allocated to the PUSC segment. In order to observe the allocation of the subchannels in the downlink as a contiguous allocation block, the subchannels shall be renumbered, the renumbering, for the first PUSC zone, shall start from the FCH subchannels (renumbered to values 0…11), then continue numbering the subchannels in a cyclic manner to the last allocated subchannel and from the first allocated subchannel to the
FCH Subchannels. Figure 221 gives an example of such renumbering for segment 1. (For other PUSC tones, renumbering shall be performed as for a segment indicated by the PRBS_ID value specified in the TD Zone IE).