<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Fixes for Network Entry Flow Charts</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2006-09-26</td>
</tr>
<tr>
<td>Source(s)</td>
<td>Nadav Lavi et al</td>
</tr>
<tr>
<td></td>
<td>Alvarion Ltd.</td>
</tr>
<tr>
<td></td>
<td>Voice: +97236457834</td>
</tr>
<tr>
<td></td>
<td>Fax: [Fax Number]</td>
</tr>
<tr>
<td></td>
<td>[mailto:Nadav.lavi@alvarion.com]</td>
</tr>
<tr>
<td>Re:</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>Fixes for Network Entry Flow Charts in 802.16e</td>
</tr>
<tr>
<td>Purpose</td>
<td>For the review in 802.16 Maint TG</td>
</tr>
<tr>
<td>Notice</td>
<td>This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.</td>
</tr>
<tr>
<td>Release</td>
<td>The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.</td>
</tr>
<tr>
<td>Patent Policy and Procedures</td>
<td>The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.</td>
</tr>
</tbody>
</table>
Fixes for Network Entry Flow Charts

Nadav Lavi, Vladimir Yanover
Alvarion Ltd.
Kevin Nguyen
BECEEM Communication Inc.
Maggi Giovanni
Siemens

1. Problem definition
The following problems were identified in SBC and REG transactions:

1. There is an unclear definition of how to handle expiration of T9 in the BS side in SBC transaction, and expiration of T17 in the BS side in REG transaction. The condition for “Release and age-out connections” is unclear and not well defined. In addition, this action is local to the BS and thus remains unknown to the SS. We suggest that the BS would send unsolicited RNG-RSP message with Abort instruction when these timers expire.

2. The current Network Entry flow chart cannot handle retransmission, either due to processing delays or message drop. After the BS transmits a response message, it will proceed directly to the next state in the Network Entry flow and thus cannot handle a retransmission of request by the SS; this would cause the Network Entry procedure to end in failure. For example, the following flow chart (Figure 67 in 802.16e-2005) shows that BS sends SBC-RSP.
If the SS does not receive SBC-RSP within T18 timeout, it will retransmit the SBC-REQ (Figure 66).
However after sending SBC-RSP, the BS proceeds directly to the registration step. The corresponding flow chart (Figure 70) does not contain any state where a retransmission of SBC-REQ can be received and processed. This is just an example of one single scenario. Similar failures can be identified for other steps in the entire Network Entry flow.
We suggest the Network Entry process be specified using 1) Network Entry state machine, and 2) set of actions/procedures of handling the Network Entry messages. This will provide a clearer definition of the network entry procedure as well as the handling of error/failure conditions.

Suggested remedy:
Replace Figure 67 in 6.3.9.7 with the following figure:
Replace Figure 68 in 6.3.9.9 with the following figure:

![Diagram](attachment://registration_diagram.png)
Replace Figure 70 in 6.3.9.9 with the following figure:

```
Stop T17

No

Authorization policy support?

Yes

Calculate HMAC over REG-REQ

HMAC Valid?

No

REG-RSP with Response = 1 (Message Auth. Failure)

Yes

Set SS capabilities supported in REG-RSP

REG-RSP with Response = 0 (OK)

Managed SS?

No

Establish provisioned connections

Yes

Change state to "Wait for REG-REQ"

Start T13

Change state to "Wait for TFTP-CPLT"

Figure 70 – Handling REG-REQ
```

Replace Figure 66 in 6.3.9.7 with the following figure:

```
Enable/disable capabilities

No

Authorization policy support?

Yes

SS Authorization and Key exchange

Register with BS

```
Figure 66 – Handling SBC-RSP
Add the following Figure:

Figure X – Network entry state-machine BS side (Applies only to OFDMA)
Wait for ranging opportunity

Got UL opportunity
Send RNG-REQ

Wait for RNG-RSP

T3 expired & have more retries
Send RNG-REQ

Got RNG-RSP
Handle RNG-RSP

(T3 expires & retries exhausted) or (RNG-RSP(Abort) from BS)

Wait for SBC-RSP

T18 expired & have more retries
Send SBC-REQ

Got SBC-RSP
Handle SBC-RSP

(T18 expires & retries exhausted) or (RNG-RSP(Abort) from BS)

Wait for REG-RSP

T6 expired & have more retries
Send REG-REQ

Got REG-RSP
Handle REG-RSP

(T6 expires & retries exhausted) or (RNG-RSP(Abort) from BS)

Send CDMA code

END

NW Entry Completed
Establish connections
Start TFTP

Figure Y – Network entry state-machine SS side (Applies only to OFDMA)