<table>
<thead>
<tr>
<th>Project</th>
<th>IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Averaging equation for CINR</td>
</tr>
<tr>
<td>Date Submitted</td>
<td>2006-09-22</td>
</tr>
</tbody>
</table>
| **Source(s)** | Itzik Shahar Intel Corporation
Itzik.shahar@intel.com |
| **Re:** | IEEE 802.16e-2005 |
| **Abstract** | Specify an averaging equation to calculate the mean CINR statistics over multiple measurements |
| **Purpose** | Adopt proposed changes |
| **Notice** | This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. |
| **Release** | The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16. |
| **Patent Policy and Procedures** | The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures <http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>. |
Averaging equation for CINR

Introduction

Currently in Section 8.4.11.3:

“The mean CINR statistic (in dB) shall be derived from a multiplicity of single messages using Equation

\[\hat{m}_{\text{CINR,db}}[k] = 10 \log(\hat{m}_{\text{CINR}}[k]) \] (145).

where

\[\hat{m}_{\text{CINR}}[k] = \begin{cases} \text{CINR}[0] & k = 0 \\ (1 - a_{\text{avg}}) \hat{m}_{\text{CINR}}[k] + a_{\text{avg}} \text{CINR}[k] & k > 0 \end{cases} \] (146)

CINR[\(k\)] is a linear measurement of CINR (derived by any mechanism which delivers the prescribed accuracy) for message \(k\); and \(a_{\text{avg}}\) is an averaging parameter specified by the BS).

In the above equation, any measurement will decay exponentially according to increasing message index, not time index. When the measurements are uniformly spaced, the equation gives recursive running average as intended. However, when the measurements are not uniformly spaced, the equation will not decay the previous measurements even though they can be fairly outdated. Therefore, the average CINR reporting will not be able to reflect the correct channel condition. This can be a problem in fast link adaptation.

Non-uniform measurement can occur when the MS is required to report CINR based on dedicated pilot over frames in which some frames may not contain any allocation to the MS.

Proposed changes

Add the paragraph before the last line of page 641 of section 8.4.11.3:

Modify the text of last paragraph in page 641 as followings:

--------------- Begin ---------------------------------

When the MS is required to measure CINR for handover, the mean CINR statistic (in dB) shall be derived from a multiplicity of single messages using Equation

\[\hat{m}_{\text{CINR,db}}[k] = 10 \log(\hat{m}_{\text{CINR}}[k]) \] (145)

where

\[\hat{m}_{\text{CINR}}[k] = \begin{cases} \text{CINR}[0] & k = 0 \\ (1 - a_{\text{avg}}) \hat{m}_{\text{CINR}}[k] + a_{\text{avg}} \text{CINR}[k] & k > 0 \end{cases} \] (146)
k is the time index for the message (with the initial message being indexed by $k = 0$, the next message by $k = 1$, etc.); CINR$[k]$ is a linear measurement of CINR (derived by any mechanism which delivers the prescribed accuracy) for message k; and avg is an averaging parameter specified by the BS.

For CINR report via COICH, REP-RSP, and Feedback Header for link adaptation, the MS shall derive mean CINR (in dB) using Equation

$$\hat{CINR}_{db}[k] = 10 \log_{10} \hat{CINR}[k] \quad (145a)$$

where

$$\hat{CINR}[k] = CINR[0] \left(1 - \frac{1}{\text{avg}}\right)^n CINR[k]$$

$$k = 0 \quad (146a)$$

CINR$[k]$ is a linear measurement of CINR for the k-th measurement; and n is number of consecutive frames in which no measurement is made. In frames where no measurement is made, the MS shall report the latest averaged results.

To solve for the standard deviation, the expectation-squared statistic shall be updated using Equation (147).

--------------------- End ---------------------------------