
2003-09-06 IEEE C802.16d-03/58r1

1

Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title Proposal on change in ARQ

Date
Submitted

2003-09-06

Source(s) Vladimir Yanover
Tal Kaitz
Naftali Chayat
Marianna Goldhammer
Lei Wang
Ofer Kelman
Radu Selea
Robert Nelson
Roger Eline
Baraa Al Dabagh
Itzik Kitroser

Alvarion mailto:vladimir.yanover@alvarion.com
 Alvarion tal.kaitz@alvarion.com
Alvarion naftali.chayat@alvarion.com
Alvarion marianna.goldhammer@alvarion.com
Wi-Lan LeiW@Wi-LAN.com
Airspan okelman@Airspan.com
Redline Comm. Radu@redlinecommunications.com
MacPhyModems bob_nelson@ieee.org
Intel roger.j.eline@intel.com
Intel baraa.al.dabagh@intel.com
Runcom itzikk@runcom.co.il

Re: It is a response to IEEE 802.16 Working Group Recirculation Ballot #11b Announcement (IEEE
802.16-03/38)

Abstract The document contains supporting material for the comment to P802.16d/D3 in the part of ARQ
implementation

Purpose 802.16 WG is invited to consider the document in the process of comments resolution

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on
the contributing individual(s) or organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained
herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate text contained in this contribution, and
any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any
IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole
discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

Patent
Policy and
Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0)
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement “IEEE standards may include the known
use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-
developing committee and provided the IEEE receives assurance from the patent holder that it will license
applicants under reasonable terms and conditions for the purpose of implementing the standard.”

Early disclosure to the Working Group of patent information that might be relevant to the standard is

essential to reduce the possibility for delays in the development process and increase the likelihood that the draft
publication will be approved for publication. Please notify the Chair <mailto:r.b.marks@ieee.org> as early as
possible, in written or electronic form, of any patents (granted or under application) that may cover technology that
is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the
IEEE 802.16 web site <http://ieee802.org/16/ipr/patents/notices>.

2003-09-06 IEEE C802.16d-03/58r1

2

Proposal on change in ARQ

Vladimir Yanover, Tal Kaitz, Naftali Chayat, Marianna Goldhammer (Alvarion),
Lei Wang (Wi-LAN), Ofer Kelman (Airspan),

Radu Selea (Redline Communications), Robert Nelson (MacPhy Modems),
Roger Eline, Baraa Al Dabagh (Intel), Itzik Kitroser (Runcom)

1. Rationale for changes

After recent changes in 802.16d/e (subchannelization) a new situation arose when
Base Station may choose (e.g. because of varying channel conditions or varying load) to
allocate just a small number of subchannels to an SS. This may produce a severe restriction to
the size of fragments transferred through the channel. For example, for channel width = 3.5
MHz, frame size = 2.5 ms, MAP burst payload = 64 bytes (QPSK ½), TTG = 1 symbol, UL
rate = QPSK ½ maximum 48 bytes can be transferred at a time. Taking out Generic MAC
Header, Fragmentation Subheader and CRC, we come to max payload size 36 bytes

Existing scheme of fragment-based ARQ does not allow re-fragmentation simply
because sequential numbers are assigned to fragments and never change. Nevertheless, when
a fragment should be retransmitted, it may happen that BS does not provide allocation of
sufficient size to transmit the fragment. There is no mechanism to inform SS why BS decided
to provide such allocation, will the situation change in next frame(s) etc. So it is a deadlock
that every implementation may resolve differently: discard the fragment each time the
situation appears or wait for larger allocation with proprietary timeout value etc. As behavior
of this type is not specified in the standard (and it is not simple develop reasonable
specification), this effect may negatively impact the system performance.

802.16a standard provides the following recommendation in 6.2.3.3:
“The maximum size of a fragment may be negotiated during or after connection

establishment. When a maximum value has been established, the transmitter shall only form
fragments whose length is less than or equal to this value even if the pending bandwidth
allocation would accept a larger fragment.”

Such a recommendation actually does not solve the problem or the price of the
solution is very high. According to above example, middle size packet e.g. 360 bytes should
be divided into 10 fragments. As a result, we get an overhead of Fragmentation Subheader
(2/36=5%). But the worst thing is necessity to process 10 fragmentation subheaders instead of
one thus increasing CPU load 10 times.

It is proposed to return to block-based ARQ (IEEE 802.16a-D1) where block size (not
fragment size) may be chosen small enough to fit into MAC frame at the lowest presumed
data rate. The block size is known to BS and this information can be used in the allocation
policy.

Block-based ARQ allows re-fragmentation so we don’t need anymore fragment
packets while allocations are large. This way unnecessary MAC overhead and processing
overhead are eliminated.

No change in ARQ state machines needed, so suggested changes in 802.16a-D7 are
surprisingly simple: to add a chapter that explains block usage (6.2.4.1 below), replace “ARQ
fragment” with “ARQ block” and “FSN” (Fragment Sequence Number) with “BSN” (Block
Sequence Number) throughout the text for ARQ-enabled conections.

2003-09-06 IEEE C802.16d-03/58r1

3

An important notice: ETSI BRAN has already accepted these changes for
HIPERMAN standard. So there is also motive of harmonization between two standards.

In the revision r1 of this document references to 802.16-2001 and 80216a-D7 are
replaced with references to P80216-2003_D0.

2. Specific changes in IEEE P802.16d/D3

Editorial instructions are marked by [red italic]
Text to be deleted is marked by blue strikethrough
Text to be added is marked by red.
All references are done to IEEE P802.16d/D3; in the case a section is absent in IEEE
P802.16d/D3, the reference points to P80216-2003_D0.

[Change in Section 3]
3.59 ARQ Fragment: A distinct unit of data that is carried on an ARQ-enabled connection. Such a unit is
assigned a sequence number, and is managed as a distinct entity by the ARQ state machines. An ARQ fragment
may be a complete SDU or may be a portion of an SDU that has been partitioned in accordance with
the MAC rules for SDU fragmentation.

3.3. ARQ Block: A distinct unit of data that is carried on an ARQ-enabled connection. Such a unit is assigned a
sequence number, and is managed as a distinct entity by the ARQ state machines. Block size is a parameter
negotiated during connection establishment. ARQ Blocks are formed by logically partitioning SDUs using the
agreed upon block size to determine the location of each block boundary. When the length of an SDU is not an
integral multiple of the block size, the final block of the SDU holds the bytes remaining between the terminating
boundary of the last block formed based on the block size and the end of the SDU.

[Change in Section 6.4.2.1.1, Table 6—Type encodings, line 3]

#3 Extended Type
Indicates whether the present Packing or Fragmentation Subheaders, is Extended
1 = Extended, Applicable only to connections where ARQ is enabled
0 = not Extended, Applicable to connections where ARQ is not enabled
Indicates whether the present Packing or Fragmentation Subheaders, is Extended

[Change in Section 6.4.2.2.1]

Table 8—Fragmentation Subheader format
Syntax Size Notes

Fragmentation Subheader() {
FC 2 bits Indicates the fragmentation state of the payload:

00 = no fragmentation
01 = last fragment
10 = first fragment
11 = continuing (middle) fragment

If (Type bit Extended Type) See Table 6
FSN BSN 11 bits Sequence number of the first block in the current SDU

fragment. This field increments by one (modulo 8
2048) for each fragment block, including
unfragmented SDUs. Applicable to connections where
ARQ is enabled

2003-09-06 IEEE C802.16d-03/58r1

4

Else
 FSN 3 bits Sequence number of the current SDU fragment This

field increments by one (modulo 2048 8) for each
fragment. Applicable to connections where ARQ is not
enabled

Reserved 3 bits
}

[Change in Section 6.4.2.2.3]

Table 11—Packing Subheader format

Syntax Size Notes
Packing Subheader() {

FC 2 bits Indicates the fragmentation state of the payload:
00 = no fragmentation
01 = last fragment
10 = first fragment
11 = continuing (middle) fragment

If (Type bit Extended Type) See Table 6
FSN BSN 11 bits Sequence number of the first block in the current SDU

fragment. This field increments by one (modulo
modulo 2048) for each fragment, including
unfragmented SDUs. Applicable to connections where
ARQ is not enabled

else
FSN 3 bits Sequence number of the first block in the current SDU

fragment. This field increments by one (modulo 8) for
each block Applicable to connections where ARQ is
enabled

Length 11 bits The length in bytes of the MAC SDU or SDU
fragment, including the length of the Packing
Subheader

}

[Change in Section 6.4.2.3.31]

This message is applicable to ARQ-enabled connections only.
The transmitter sends this message when it wants to skip a certain number of ARQ fragments blocks.

The ARQ Discard message shown in Table 4 shall be sent as a MAC management message on the basic
management connection of the appropriate direction. Table 56b shows the format of the Discard message.

Table 59 - ARQ Discard message format

Syntax Size Notes
ARQ_Discard_Message_Format() {

Management Message Type = 34 8 bits
Connection ID 16 bits CID to which this message refers
Reserved 5 bits
FSN BSN 11 bits Sequence Number of the

last fragment block in the transmission
window that the transmitter wants
to discard

}

[Change in Section 6.4.3.4.2]

The use of packing subheaders for ARQ-enabled connections is similar to that for non-ARQ connections as
described in 6.4.3.4.1, except that ARQ-enabled connections shall set the Extended Type bit (see Table 6) in the
Generic MAC Header to 1, whereas non-ARQ connections shall set the Extended Type bit to 0. In addition, the

2003-09-06 IEEE C802.16d-03/58r1

5

fixed-length packing option (6.4.3.4.1.1) is not supported by ARQ-enabled connections. If packing is turned on
for a connection, the MAC may pack multiple MAC SDUs into a single MAC PDU. The transmitting side has
full discretion whether or not to pack a group of MAC SDUs and/or fragments in a single MAC PDU.
Depending on the ARQ policies, the transmitter may choose to pack multiple fragments of the same SDU into a
single MAC PDU, even if there is sufficient bandwidth to send the whole MAC PDU un-fragmented.
While this does not change the semantics of the packing, the ARQ protocol may utilize this feature to allow
flexibility in retransmission.
The packing of variable-length MAC SDUs for the ARQ-enabled connections is similar to that of non-ARQ
connections, when fragmentation is enabled. The FSN BSN of the Packing Subheader shall be used by the ARQ
protocol to identify and retransmit lost fragments. The primary difference between ARQ and non-ARQ packing
is in the interaction with fragmentation.

For ARQ-enabled connections, when the type field indicates packing subheaders are in use,
fragmentation information for each individual MAC SDU or MAC SDU fragment is contained in the associated
Packing Subheader. When the type field indicates that packing is not in use, fragmentation information for the
MAC PDU's single payload (MAC SDU or MAC SDU fragment) is contained in the fragmentation header
appearing in the message. Figure 31 illustrates the use of Fragmentation subheader without packing.

Generic MAC
Header

Other
subheaders

Fragmentation
subheader

Payload (One
SDU or fragment
of an SDU)

CRC-32

Figure 31—Example MAC PDU with extended Fragmentation subheaders

Figure 32 illustrates the structure of a MAC PDU with ARQ packing subheaders. Each of the packed

MAC SDU or MAC SDU fragments or ARQ feedback payload requires its own packing subheader and some of
them may be transmissions while others are re-transmissions.

Generic
MAC
Header

Grant
Management
Subheader
(UL only)

Packing
subheader

Payload (One
SDU or SDU
fragment or a set
of ARQ
Feedback IEs))

… Packing
subheader

Payload
(One SDU

or SDU
fragment)

CRC-32

Figure 32—Example MAC PDU with ARQ Packing subheader

Unlike the non-ARQ case, it is possible to have continuation fragments packed with other fragments in
the same MAC PDU for various reasons. For example, in order to support flexible re-transmission, the ARQ
mechanism may choose to fragment a MAC SDU into multiple fragments and pack them into the same MAC
PDU during the first t ransmission. Similarly MAC PDU may have fragments from different SDUs, including a
mix of first transmissions and retransmissions. The 11-bit FSN BSN and 2-bit FC fields uniquely identify each
fragment or nonfragmented SDU.

[Change in Section 6.4.3.4.3]
The FSN / BSN field of the Packing Subheader shall be ignored for the ARQ Feedback Payload and the FC bits
shall be set to 00.

[Insert before Section 6.4.4.1 additional heading]

6.4.4.1. ARQ Block Usage
The clause describes the use of blocks for ARQ.
A MAC SDU is logically partitioned into blocks whose length is specified by the connection TLV parameter

ARQ_BLOCK_SIZE. When the length of the SDU is not an integer multiple of the connection's block size, the
final block of the SDU is formed using the SDU bytes remaining after the final full block has been determined.
For purposes of ARQ, handling of partial blocks is identical to that for full blocks with one exception. When a
partial block is included in an MPDU, the FC bits of the corresponding fragmentation or packing subheader
shall always be set to 01 (last fragment). Once an SDU is partitioned into a set of blocks, that partitioning
remains in effect until all blocks of the SDU are successfully delivered to the receiver, or the SDU is discarded
by the transmitter state machine.

2003-09-06 IEEE C802.16d-03/58r1

6

A set of blocks selected for transmission or retransmission is encapsulated into a PDU. A PDU may
contain blocks that are transmitted for the first time as well as retransmitted blocks. If fragmentation is enabled
for this connection, the fragmentation shall occur only on ARQ block boundaries. If a PDU is not packed, all the
blocks in that PDU must have contiguous block numbers. When a PDU is packed, any sequence of blocks
between MAC sub-headers and the sequence of blocks after the last packing sub-header must have contiguous
block numbers.
When fragmentation is not enabled, the ARQ block size shall be set to match the fixed SDU size connection
setting.
If ARQ is enabled at the connection, Fragmentation and Packing sub-headers contain a BSN, which is the
sequence number of the first ARQ block in the sequence of blocks following this sub-header. It is a matter of
transmitter's policy whether a set of blocks once transmitted as a single PDU should be retransmitted also as a
single PDU or not. Figure NNN illustrates the use of blocks for ARQ transmissions and retransmissions; two
options for retransmission presented: with and without rearrangements of blocks.

5 6 7 8 9 10 11 12 13 14

5 6 7 8 9 10 11 12 13 1485

PDU #1

SDU #1 SDU #2

Frag 0 Frag 1 Frag 0

15 16

Frag 1

Original Transmission

PDU #3

8 9 10 118

Frag 1 of SDU #1

Packed PDU #3

8 9 10 11 12 13 148

Frag 1 of SDU #1 Frag 0 of SDU #2

Retransmission of PDU with rearrangement

Packed PDU #2

Frag 1 of SDU #1 Frag 0 of SDU #2

12 13 1412

Packed PDU #4

Frag 0 of SDU #2

Frag 0 of SDU #1

Two consecutive SDUs presented to MAC for the same connection,

12

12

Retransmission of PDU without rearrangement

10

Frag 2 of SDU #1

Figure NNN.—Block usage examples for ARQ transmissions and retransmissions

[Change in Section 6.4.4.1]

2003-09-06 IEEE C802.16d-03/58r1

7

Table 86 - ARQ Feedback IE

Syntax Size Notes
ARQ_feedback_IE (LAST) { variable

CID 16 bits The ID of the connection being referenced
LAST 1 bit 0 = More ARQ feedback IE in the list

1 = Last ARQ feedback IE in the list
ACK Type 2 bit 0x0 = Selective ACK entry

0x1 = Cumulative ACK entry
0x2 = Cumulative with Selective ACK entry
0x3 = Reserved

FSNBSN 11 bits
 Number of ACK Maps 2 bits If ACK Type == 01, the field is reserved and set to

00. Otherwise the field indicates the number of
ACK maps:
0x0 = 1, 0x1 = 2, 0x2 = 3, 0x3 = 4

if (ACK Type!= 01) {
for (i=0; i< Number of ACK Maps+ 1;
++i){

ACK Map 16 bits
 }
 }
}

FSN BSN
If (ACK Type == 0x0): FSN BSN value corresponds to the most significant bit of the first 16-bit
ARQ ACK map.
If (ACK Type == 0x1): FSN BSN value indicates that its corresponding fragment and all fragments
with lesser (see 6.2.4.5.1) values within the transmission window have been successfully received.
If (ACK Type == 0x2): Combines the functionality of types 0x0 and 0x1.
ACK Map
Each bit set to one indicates the corresponding ARQ fragment has been received without errors.
The bit corresponding to the FSN BSN value in the IE, is the most significant bit of the first map
entry. The bits for succeeding fragment numbers are assigned left-to-right (msb to lsb) within the map entry. If
the ACK Type is 0x2, then the most significant bit of the first map entry shall be set to one and the IE shall be
interpreted as a cumulative ACK for the FSN BSN value in the IE. The rest of the bitmap shall be interpreted
similar to ACK Type 0x0.

[Change in Section 6.4.4.2]

6.4.4.2.1 ARQ_ FSN BSN _MODULUS

ARQ_ FSN BSN _MODULUS is equal to the number of unique FSN BSN values, i.e. 2^11.

6.4.4.2.2 ARQ_WINDOW_SIZE
ARQ_WINDOW_SIZE is the maximum number of unacknowledged ARQ fragments blocks at any given time.
An ARQ fragment block is unacknowledged if it has been transmitted but no acknowledgement has been
received.
ARQ_WINDOW_SIZE shall be less than or equal to half of the ARQ_ FSN BSN _MODULUS.

6.4.4.2.3 ARQ_FRAGMENT_LIFETIME
ARQ_FRAGMENT_LIFETIME is the maximum time interval an ARQ fragment block shall be managed by the
transmitter ARQ state machine, once initial transmission of the fragment has occurred. If transmission (or
subsequent retransmission) of the fragment block is not acknowledged by the receiver before the time limit is
reached, the fragment block is discarded.

6.4.4.2.4 ARQ_RETRY_TIMEOUT

2003-09-06 IEEE C802.16d-03/58r1

8

ARQ_RETRY_TIMEOUT is the time interval a transmitter shall wait before retransmission of an
unacknowledged fragment block for retransmission. The interval begins when the ARQ fragment block was last
transmitted.
6.4.4.2.5 ARQ_SYNC_LOSS_TIMEOUT
ARQ_SYNC_LOSS_TIMEOUT is the maximum time interval ARQ_TX_WINDOW_START or
ARQ_RX_WINDOW_START shall be allowed to remain at the same value before declaring a loss of
synchronization of the sender and receiver state machines when data transfer is known to be active. The ARQ
receiver and transmitter state machines manage independent timers. Each has its own criteria for determining
when data transfer is ‘active’ (see 6.4.4.5.2 and 6.4.4.5.3).
6.4.4.2.6 ARQ_RX_PURGE_TIMEOUT
ARQ_RX_PURGE_TIMEOUT is the time interval the receiver shall wait after successful reception of a
fragment block that does not result in advancement of ARQ_RX_WINDOW_START, before advancing
ARQ_RX_WINDOW_START (see 6.4.4.5.3).

6.2.4.2.7. ARQ_BLOCK_SIZE
This value of this parameter specifies the size of ARQ block.

[Change in Section 6.4.4.3]

6.4.4.3 ARQ procedures
6.4.4.3.1 ARQ state machine variables
All ARQ state machine variables are set to 0 at connection creation or by an ARQ reset operation.
6.4.4.3.1.1 Transmitter variables

ARQ_TX_WINDOW_START: All FSN BSN up to (ARQ_TX_WINDOW_START - 1) have been
acknowledged.

ARQ_TX_NEXT_ FSN BSN: FSN BSN of the next fragment block to send. This value shall reside in the
interval
ARQ_TX_WINDOW_START to (ARQ_TX_WINDOW_START + ARQ_WINDOW_SIZE), inclusive.

6.4.4.3.1.2 Receiver variables
ARQ_RX_WINDOW_START: All FSN BSN up to (ARQ_RX_WINDOW_START - 1) have been correctly
received.
ARQ_RX_HIGHEST_ FSN BSN: FSN BSN of the highest fragment block received, plus one. This value shall
reside in the interval ARQ_RX_WINDOW_START to (ARQ_RX_WINDOW_START +
ARQ_WINDOW_SIZE), inclusive.

[Change in Section 6.4.4.5]

6.4.4.5.1 Sequence number comparison

Transmitter and receiver state machine operations include comparing FSNs BSNs and actions taken
based on whether it is larger or smaller. In this context, it is not possible to compare the numeric sequence
number values directly to make this determination. Instead, the comparison shall be made by normalizing the
values relative to the appropriate state machine base value and the maximum value of sequence numbers,
ARQ_ FSNBSN_MODULUS, and then comparing the normalized values. Normalization is accomplished by
using the expression:
fsn' = (fsn - FSN_base) mod ARQ_FSN_MODULUS (8)
bsn' = (bsn - BSN_base) mod ARQ_BSN_MODULUS (8)
The base values for the receiver and transmitter state machines are ARQ_TX_WINDOW_START and
ARQ_RX_WINDOW_START, respectively.

6.4.4.5.2 Transmitter state machine

The transmitter is responsible for choosing the appropriate fragment size on a per-fragment
basis. Determining fragment size is outside the scope of this standard. Unlike non-ARQ connections,

2003-09-06 IEEE C802.16d-03/58r1

9

where a single MAC PDU would not normally have two consecutive fragments from the same MAC
SDU, this is likely for ARQ-enabled connections, since such fragmentation can facilitate
retransmission. The MAC SDU fragment structure shall be maintained for retransmissions An ARQ
fragment block may be in one of the following four states, not-sent, outstanding, discarded and waiting-for-
retransmission. Any ARQ fragment block begins as not-sent. After it is sent it becomes outstanding for a
period of time termed ACK_RETRY_TIMEOUT. While a fragment block is in outstanding state, it either is
acknowledged and discarded, or transitions to waiting-for-retrans-mission
after ACK_RETRY_TIMEOUT or NACK. An ARQ fragment block can become waiting-for-retransmission
before the ACK_RETRY_TIMEOUT period expires if it is negatively acknowledged. An ARQ fragment
block may also change from waiting-for-retransmission to discarded when an ACK message for it is received or
after a timeout ARQ_FRAGMENT_LIFETIME. For a given connection the transmitter shall first handle
(transmit or discard) fragment block in 'waiting-for-retransmission' state and only then fragment block in
'non-sent' state. Fragments Blocks in 'outstanding' or 'discarded' state shall not be transmitted. When
fragments blocks are retransmitted, the fragment with the lowest FSN BSN shall be retransmitted first. The
ARQ transmit fragment block state sequence is shown in Figure 34.

Not-sent Outstanding

Discarded

Waiting-for-
retransmit

Transmit

Retransmit

ARQ_RETRY_TIMEOUT or NACK

ARQ_FRAGMENT_BLOCK_LI
FETIME

ARQ_
FRAGMENT_BLOCK_LIFETI

Done

ACK ACK

Yes CK

Figure 34: Transmitter ARQ state machine

MAC PDU formation continues with a connection's 'not-sent' MAC SDUs. The transmitter builds each
MAC PDU using the rules for fragmentation and packing as long as the number of fragments blocks to be sent
plus the number of fragments blocks already transmitted and awaiting retransmission does not exceed the limit
imposed by ARQ_WINDOW_SIZE. As each 'not-sent' fragment block is formed and included in a MAC
PDU, it is assigned the current value of ARQ_TX_NEXT_ FSN BSN which is then incremented.
When an acknowledgement is received, the transmitter shall check the validity of the FSN BSN. A valid FSN
BSN is one in the interval ARQ_TX_WINDOW_START to ARQ_TX_NEXT_ FSN BSN -1 (inclusive). If
FSN BSN is not valid, the transmitter shall ignore the acknowledgement.

When a cumulative acknowledgement with a valid FSN BSN is received, the transmitter shall consider all
fragments blocks in the interval ARQ_TX_WINDOW_START to FSN BSN (inclusive) as acknowledged
and set ARQ_TX_WINDOW_START to FSN BSN +1.
When a selective acknowledgement is received, the transmitter shall consider as acknowledged all frag-ments so
indicated by the entries in the bitmap for valid FSN BSN values. As the bitmap entries are processed in
increasing FSN BSN order, ARQ_TX_WINDOW_START shall be incremented each time the FSN BSN of
an acknowledged FSN BSN is equal to the value of ARQ_TX_WINDOW_START.
When ARQ_TX_WINDOW_START has been advanced by either of the above methods and acknowledgement
of reception has already been received for the fragment with the FSN BSN value now assigned to
ARQ_TX_WINDOW_START, the value of ARQ_TX_WINDOW_START shall be incremented until an FSN
BSN value is reached for which no acknowledgement has been received.

2003-09-06 IEEE C802.16d-03/58r1

10

A bitmap entry not indicating acknowledged that has an FSN BSN lower than a bitmap entry, which does
indicate acknowledged shall be considered a NACK for the corresponding fragment. A not acknowledged bit
map entry may also be considered a NACK if sufficient time elapsed before the feedback IE was transmitted to
allow the receiver to receive and process the corresponding fragment.

When a cumulative with selective acknowledgement with a FSN BSN is received, the transmitter performs
the actions described above for cumulative acknowledgement, followed by those for a selective
acknowledgement.

All timers associated with acknowledged fragments shall be cancelled.

A Discard message shall be sent following violation of ARQ_FRAGMENTBLOCK_LIFETIME. The
message may be sent immediately or may be delayed up to ARQ_RX_PURGE_TIMEOUT +
ARQ_RETRY_TIMEOUT.
Following the first transmission, subsequent discard orders shall be sent to the receiver at intervals of
ARQ_RETRY_TIMEOUT until an acknowledgement to the discarded FSN BSN has been received. Discard
orders for adjacent FSN BSN values may be accumulated in a single Discard message.
The actions to be taken by the transmitter state machine when an ARQ Reset Message is received are provided
in Figure 35. The actions to be taken by the transmitter state machine when it wants to initiate a reset
of the receiver ARQ state machine are provided in Figure 36.

2003-09-06 IEEE C802.16d-03/58r1

11

ARQ Reset message
Type =0x0

Set T22

ARQ_TX_WINDOW_START
= 0

Clear T22

Discard incomplete
SDUs

Enable
transmission

Done

Disable
reception

Initiate ARQ
Reset

Timeout T22

Wait for
ARQ Reset message

with Type==0x1

ARQ Reset with
Type==0x1

No Retries++
Exhausted?

Yes

Error:
Re-initialize MAC

ARQ Reset message
Type =0x2

Wait for
ARQ Reset message
with Type==0x0

ARQ Reset with
Type==0x0

Disable
transmission

ARQ Reset message
Type =0x1

ARQ_RX_WINDOW_START
= 0

Discard SDUs with
Discarded fragments

Enable
reception

Set T22

Wait for
ARQ Reset message

with Type==0x2

ARQ Reset with
Type==0x2

NoRetries++
Exhausted?

Yes

Error:
Re-initialize MAC

Timout T22

-

 Clear T22

Figure 35—ARQ Reset message dialog - receiver initiated

2003-09-06 IEEE C802.16d-03/58r1

12

Initiate Reset
of ARQ

ARQ Reset message
Type =0x0

Disable
transmission

Wait for
ARQ Reset message
with Type==0x1

ARQ Reset with
Type==0x1 Timeout T22

NoRetries++
Exhausted?

Yes
ARQ_RX_WINDOW_START

= 0

Discard incomplete
SDUs

Enable
transmission

ARQ Reset message
Type =0x2

Done

Error:
Re-initialize MAC

Clear T22

Set T22

Wait for
ARQ Reset message
with Type==0x0

ARQ Reset message
Type =0x1

ARQ Reset with
Type==0x0

Disable
transmission

Set T22

ARQ_TX_WINDOW_START
= 0

Discard SDUs with
Tx-ed fragments

Enable
transmission

Wait for
ARQ Reset message
with Type==0x2

ARQ Reset with
Type==0x2

Timeout T22

Yes

Retries++
Exhausted?

No Clear T22

Error:
Re-initialize MAC

Figure 36—ARQ Reset message dialog - transmitter initiated

Synchronization of the ARQ state machines is governed by a timer managed by the transmitter state machine.
Each time ARQ_TX_WINDOW_START is updated, the timer is set to zero. When the timer exceeds the value
of ARQ_SYNC_LOSS_TIMEOUT the transmitter state machine shall initiate a reset of the connection's state
machines as described in Figure 140.

A Discard message may be sent to the receiver when the transmitter wants to skip ARQ fragments blocks up to
the FSN BSN value specified in the Discard message. Upon receipt of the message, the receiver updates its state
information to indicate the specified fragments blocks were received and forwards the information to the
transmitter through an ARQ Feedback IE at the appropriate time.

6.2.4.5.3 Receiver state machine

When a PDU is received, its integrity is determined based on the CRC-32 checksum. If a PDU passes the
checksum, it is unpacked and de-fragmented, if necessary. The receiver maintains a sliding-window defined by
ARQ_RX_WINDOW_START state variable and the ARQ_WINDOW_SIZE parameter. When an ARQ
fragment block with a number that falls in the range defined by the sliding window is received, the receiver shall
accept it. ARQ fragment block numbers outside the sliding window shall be rejected as out of order. The

2003-09-06 IEEE C802.16d-03/58r1

13

receiver should discard duplicate ARQ fragments blocks (i.e. ARQ fragments blocks that where already
received correctly) within the window.

ARQ Block

Yes No

Wait for ARQ Blocks

Add BSN to BSN
list to be ACK - ed

BSN valid?

Reset BSN timer for ARQ_RX_PURGE_TIMEOUT
ARQ_RX_WINDOW_ START++

Reset timer for ARQ_SYNC_LOS S_TIMEOUT

No BSN= ARQ_RX_WINDOW_
START

Yes

Store Block

Done

BSN valid?

Discard Block

Yes No

Figure 37 - ARQ fragment block reception

The sliding window is maintained such that the ARQ_RX_WINDOW_START variable always points to the
lowest numbered ARQ fragment block that has not been received or has been received with errors. When an
ARQ fragment block with a number corresponding to the ARQ_RX_WINDOW_START is received, the
window is advanced (i.e. ARQ_RX_WINDOW_START is incremented modulo ARQ_ FSN BSN
_MODULUS) such that the ARQ_RX_WINDOW_START variable points to the next lowest numbered ARQ
fragment block that has not been received or has been received with errors. The timer associated with
ARQ_SYNC_LOSS_TIMEOUT shall be reset.

As each fragment block is received, a timer is started for that fragment block. When the value of the timer for a
fragment block exceeds ARQ_RX_PURGE_TIMEOUT, the timeout condition is marked. When this occurs,
ARQ_RX_WINDOW_START is advanced to the FSN of the next fragment block not yet received after the
marked fragment block. Timers for delivered fragments blocks remain active and are monitored for timeout
until the FSN values are outside the receive window.

When ARQ_RX_WINDOW_START is advanced, any FSN BSN values corresponding to fragments blocks that
have not yet been received residing in the interval between the previous and current
ARQ_RX_WINDOW_START value shall be marked as received and the receiver shall send an ARQ Feedback
IE to the transmitter with the updated information. Any fragments blocks belonging to complete SDUs shall be
delivered. Fragments blocks from partial SDUs shall be discarded.

When a discard message is received from the transmitter, the receiver shall discard the specified fragments
blocks, advance ARQ_RX_WINDOW_START to the FSN of the first fragment block not yet received after the
FSN pro-vided in the Discard message, and mark all not received fragments blocks in the interval from the
previous to new ARQ_RX_WINDOW_START values as received for ARQ feedback IE reporting.

For each ARQ fragment block received, an acknowledgment shall be sent to the transmitter. Acknowledgment
for fragments blocks outside the sliding window shall be cumulative. Acknowledgments for fragments
blocks within the sliding window may be either for specific ARQ fragments blocks (i.e. contain information
on the acknowledged ARQ fragment block numbers), or cumulative (i.e. contain the highest ARQ fragment
block number below which all ARQ fragments blocks have been received correctly) or a combination of both
(i.e., cumulative with selective). Acknowledgments shall be sent in the order of the ARQ fragment block

2003-09-06 IEEE C802.16d-03/58r1

14

numbers they acknowledge. The frequency of acknowledgement generation is not specified here and is
implementation dependent.
A MAC SDU is ready to be handed to the upper layers when all of the ARQ fragments blocks of the MAC
SDU have been correctly received within the time-out values defined.

When ARQ_DELIVER_IN_ORDER is enabled, a MAC SDU is handed to the upper layers as soon as all the
ARQ fragments blocks of the MAC SDU have been correctly received within the defined time-out values and
all fragments blocks with sequence numbers smaller than those of the completed message have either been
discarded due to time-out violation or delivered to the upper layers.

When ARQ_DELIVER_IN_ORDER is not enabled, MAC SDUs are handed to the upper layers as soon as all
fragments blocks of the MAC SDU have been successfully received within the defined time-out values.
The actions to be taken by the receiver state machine when an ARQ Reset Message is received are provided in
Figure 36. The actions to be taken by the receiver state machine when it wants to initiate a reset of the
transmitter ARQ state machine are provided in Figure 35.

Synchronization of the ARQ state machines is governed by a timer managed by the receiver state machine.

Each time ARQ_RX_WINDOW_START is updated, the timer is set to zero. When the timer exceeds the value
of ARQ_SYNC_LOSS_TIMEOUT the receiver state machine shall initiate a reset of the connection's state
machines as described in Figure 35.

[Add at the end of 6.4.3.3]

For non-ARQ connections, fragments are transmitted once and in sequence. The sequence
number assigned to each fragment allows the receiver to recreate the original payload and to detect the
loss of any intermediate fragments. Upon loss, the receiver shall discard all MAC PDUs on the
connection until a new first fragment is detected or a non-fragmented MAC PDU is detected.

For ARQ-enabled connections, fragments are formed for each transmission by concatenating
sets of ARQ blocks (see section 6.4.4.1) with adjacent sequence numbers. The sequence number for
the fragment is assigned by taking the block sequence number (BSN) of the first ARQ block
appearing in the fragment

[Add new heading]
11.4.9.18.8 ARQ_BLOCK_SIZE
This value of this parameter specifies the size of ARQ block. This parameter is established by
negotiation during the connection creation and connection change dialogs.
The requester includes its desired setting in the REQ message. The receiver of the REQ message shall
take the smaller of the value it prefers and value in the REQ message. This minimum value is
included in the RSP message and becomes the agreed upon length value.
Absence of the parameter during a DSA dialog shall indicate the originator of the message desires the
maxi-mum value. Absence of the parameter during a DSC dialog indicates the current setting shall
remain in force.

Type Length Value Scope
[24/25].22

2 0- Reserved
1-2040 Desired/Agreed size in bytes
2041-65535 Reserved

DSA-REQ
DSA-RSP
DSC-REQ
DSC-RSP

