Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16
Title	AMC subchannel subcarrier allocation enhancements
Date Submitted	2004-04-15
Source(s)	Panyuh Joo, Seungjoo Maeng, Jaeho Jeon, Soonyoung Yoon, Jeong-Heon Kim, Jaehyok Lee, Myungkwang Byun, Inseok Hwang, Jaehee Cho, Jiho Jang, Sanghoon Sung, Samsung Electronics Co. Ltd. Yigal Leiba, Zion Hadad, Yossi Segal, Itzik Kitroser Runcom Technologies Choongil Yeh, Hyoungsoo Lim, Yuro Lee, Jongee Oh, DongSeung Kwon, ETRI panyuh@samsung.com yigall@runcom.co.il lim@etri.re.kr
Re:	Sponsor re-circulation Ballot
Abstract	AMC subchannel subcarrier allocation enhancements
Purpose	Adoption of proposed changes into P802.16-REVd/D4-2004
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standardsdeveloping committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailtor..b.marks@ieee.org as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.

1 Introduction

For AAS and AMC subchannel, there is no consideration to identify the cell specific subchannel. In other words, the current subcarrier allocation may allocate same subcarriers for a AAS or AMC subchannels in different cell. In case of FUSC, it may cause to fail decoding target signal even with reasonable SINR.

2 Proposed scheme

A subcarrier permutation for band AMC subchannel is proposed to identify AMC subchannel of a cell/sector. For diversity subchannel, the location of subcarriers are cell/sector specific. For AMC subchannel, the location of subcarriers may coincide with other AMC subchannel for the same band. In case of FUSC, it may cause to fail decoding target signal even with reasonable SINR. Now consider the following case. Two information bit sequence with same length are encoded and modulated identically (same AMC level) in the neighboring cells. Further, the subchannels with same subcarriers are allocated for the encoded and modulated sequence and the order of the subcarrier mapping coincides. In this case, one may have the following signal at the input to the FEC decoder (For simplicity, noise is ignored).
$r=H_{1} C_{1}+H_{2} C_{2}$
C_{1} and C_{2} are the encoded bit sequence for the two information bit sequences. H_{1} and H_{2} are channel responses (for simplicity, assuming that H_{1} and H_{2} are real values). In this case, the conventional decoder can only decode one of C 1 and C 2 , depending the magnitude of H 1 and H 2 . When C_{1} is the signal from the serving BS and $\mathrm{H}_{1}<\mathrm{H}_{2}$, the MS loses the packet.
We propose to change the orders of subcarrier mapping within a AMC subchannel. The figure below illustrates the concept of subcarrier permutation. RS sequence defined $\mathrm{GF}(49)$ is used to provide systematic permutation per cell/sector.

3 Suggested text change

[Add the following at the end of 8.4.6.3]
Let the index of the traffic subcarriers be numbered from 0 to 47 within an AMC subchannel. The index of first traffic subcarrier in the first bin is 1 , next one is 2 and so on. The index of the subcarriers increases along the subcarriers first then the bin. The j-th symbol of the 48 symbols where a band AMC subchannel is allocated is mapped onto the $\left(S_{\text {per }}^{\text {off }}(j)-1\right)$-th subcarrier of a subchannel. j is $[0,47]$.

$$
S_{p e r}^{\text {off }}(j)=\left\{\begin{array}{cc}
P_{p e r}(j)+\text { off } & P_{p e r}(j)+\text { off } \neq 0 \\
o f f & P_{p e r}(j)+o f f=0
\end{array}\right.
$$

where

$$
\begin{array}{lr}
P_{\text {per }}(j) & \begin{array}{c}
\text { The } \mathrm{j} \\
\text { per }
\end{array} \\
& \text { Basic } \\
P_{0} & 62,4 \\
& 51,2 \\
\text { hepta } \\
\text { per }=I D_{\text {cell }} \bmod 48 \\
\text { off }=\left(\left\lceil I D_{\text {cell }} \div 48\right\rceil\right) \bmod 49
\end{array}
$$

The j-th element of the left cyclic shifted version of basic sequence P_{0} by
$P_{0} \quad$ Basic sequence defined in $\operatorname{GF}\left(7^{2}\right):\{01,22,46,52,42,41,26,50,05,33$, $62,43,63,65,32,40,04,11,23,61,21,24,13,60,06,55,31,25,35,36$, $51,20,02,44,15,34,14,12,45,30,03,66,54,16,56,53,64,10\}$ in hepta-notation.
$n \bmod m \quad$ Remainder of $n \div \mathrm{m}$.

$$
\lceil X\rceil \quad \text { The largest integer not greater than } \mathrm{X} \text {. }
$$

The addition between two element in $\operatorname{GF}\left(7^{2}\right)$ is component-wise addition modulo 7 of two representation. For example, (56) $+(34)$ in $\operatorname{GF}\left(7^{2}\right)=(13)$.

