Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16
Title	Additional optional Symbol Structure
Date Submitted	2004-04-15
Source(s)	Panyuh Joo, Seungjoo Maeng, Jaeho Jeon, Soonyoung Yoon, Jeong-Heon Kim, Jaehyok Lee, Myungkwang Byun, Inseok Hwang, Jaehee Cho, Jiho Jang, Sanghoon Sung, Samsung Electronics Co. Ltd. Yigal Leiba, Zion Hadad, Yossi Segal, Itzik Kitroser Runcom Technologies Choongil Yeh, Hyoungsoo Lim, Yuro Lee, Jongee Oh, DongSeung Kwon, ETRI panyuh@samsung.com yigall@runcom.co.il lim@etri.re.kr
Re:	Sponsor re-circulation Ballot
Abstract	Additional optional Symbol Structure
Purpose	Adoption of proposed changes into P802.16-REVd/D4-2004
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0) http://ieee802.org/16/ipr/patents/policy.html, including the statement "IEEE standards may include the known use of patent(s), including patent applications, if there is technical justification in the opinion of the standardsdeveloping committee and provided the IEEE receives assurance from the patent holder that it will license applicants under reasonable terms and conditions for the purpose of implementing the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:r.b.marks@ieee.org as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site http://ieee802.org/16/ipr/patents/notices.

Add the following new paragraph:

8.4.6.1.4 Additional optional Symbol Structure for FUSC

The additional optional subchannel structure in the downlink supports 32 subchannels where each transmission uses 48 data carriers symbols as their minimal block of processing. In the downlink, all the pilot carriers are allocated first, and then the remaining carriers are used exclusively for data transmission. $N_{\text {used }}$ subcarriers are divided into 9 contiguous subcarriers in which one pilot carrier is allocated. The position of the pilot carrier in 9 contiguous subcarriers varies according to the index of OFDM symbol which contains the subcarriers. If the 9 contiguous subcarriers indexed as $0 \sim 8$, the index of the pilot carrier shell be $3 l+1$ where $l=m \bmod 3(m$ is the symbol index).

Table 1 Downlink subcarrier allocation

parameters	Value	comments	
Number of DC Subcarriers	1		
Number of Guard Subcarriers, Left	159		
Number of Guard Subcarriers, Right	160		
Number of Used Subcarriers $\left(N_{\text {used })}\right.$	1728	192	
Number of Pilot Subcarriers	1536	Symbol index 0 is the first symbol from which the diversity subchannelization is applied.	
Pilot subcarrier index	$9 k+3 m+1$, for $k=0, \ldots, 191$ and $m=[$ symbol index]mod3		
Number of Data Subcarriers			

8.4.6.1.4.1 Downlink subchannels subcarrier allocation

To allocate the diversity subchannels, the whole data tones in a slot are partitioned into groups of contiguous data subcarriers. Each subchannel consists of one subcarrier from each of these groups. The number of groups is therefore equal to number of data subcarriers per subchannel, and its value is 48 . The number of the subcarriers in a group is equal to the number of subchannels, 32. The exact partitioning into subchannels is according to Equation (1), called DL permutation formula.

$$
\operatorname{Carrier}(s, m)= \begin{cases}32 \times k+\left\lfloor s+P_{1, c_{1}}(k)+P_{2, c_{2}}(k)\right\rfloor, & 0<c_{1}, c_{2}<N_{s} \tag{1.}\\ 32 \times k+\left[s+P_{1, c_{1}}(k)\right], & c_{1} \neq 0, c_{2}=0 \\ 32 \times k+\left[s+P_{2, c_{2}}(k)\right], & c_{1}=0, c_{2} \neq 0 \\ 32 \times k+s, & c_{1}=0, c_{2}=0\end{cases}
$$

where
$\operatorname{Carrier}(s, m ; n)=$ subcarrier index of m-th subcarrier in subchannel s at symbol n
$k=(m+s * 23) \bmod 48$
$n=$ data symbol index in slot, $n=\lfloor m / 48\rfloor$
$m=$ subcarrier-in-subchannel index from the set [0~47]
$s=$ index number of a subchannel from the set $[0 \sim 31]$
$\mathrm{P}_{1, \mathrm{c} 1}(\mathrm{j})=j$-th element of the sequence obtained by rotating basic permutation sequence P_{1} cyclically to the left c_{1} times. $\mathrm{P}_{1}=\{1,2,4,8,16,5,10,20,13,26,17,7,14,28,29,31,27,19,3,6,12,24,21,15$, $30,25,23,11,22,9,18\}$
$\mathrm{P}_{2, \mathrm{c} 2}(\mathrm{j})=j$-th element of the sequence obtained by rotating basic permutation sequence P_{2} cyclically to the left c_{2} times. $\mathrm{P}_{2}=\{1,4,16,10,13,17,14,29,27,3,12,21,30,23,22,18,2,8,5,20,26,7,28,31$, $19,6,24,15,25,11,9\}$
$\mathrm{c}_{1}=I D_{\text {cell }} \bmod \mathrm{N}_{\mathrm{s}}, \mathrm{c}_{2}=\left\lfloor I D_{\text {cell }} / \mathrm{N}_{\mathrm{s}}\right\rfloor, 0 \leq c_{1}, c_{2}<N_{s}$
In Equation (1), the operation in [] is done over $\operatorname{GF}\left(\mathrm{N}_{\mathrm{s}}\right)$. In $\mathrm{GF}\left(2^{5}\right)$, addition is binary XOR operation. For example, $29+12$ in $\operatorname{GF}\left(2^{\mathrm{n}}\right)$ is $\left[(11101)_{2} \operatorname{XOR}(01100)_{2}\right]=(10001)_{2}=17$, where $(\mathrm{x})_{2}$ represents binary expansion of x .

