Project	IEEE 802.16 Broadband Wireless Access Working Group < <u>http://ieee802.org/16</u> >		
Title	MAC Support for OFDMA MIMO		
Date Submitted	2004-04-24		
Source:	Yigal Leiba, Zion Hadad, Yossi Segal, yigall@runcom.co.il Itzik Kitroser		
	Runcom Technologies		
	Mo-Han Fong, Hang Zhang, Peiying mhfong@nortelnetworks.com Zhu, Wen Tong		
	Nortel Networks		
Re:	Reply comments to sponsor re-circulation ballot		
Abstract	Contribution describing the MAC Support for 802.16d OFDMA MIMO		
Purpose	Adopt of proposed changes into IEEE 802.16 REVd/D4 document		
Notice	This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.		
Patent Policy and Procedures	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known use of patent(s), including patent applications, provided the IEEE receives assurance from the patent holder or applicant with respect to patents essential for compliance with both mandatory and optional portions of the standard." Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair mailto:chair@wirelessman.org > as early as possible, in written or electronic form, if patented technology (or technology under patent application) might be incorporated into a draft standard being developed within the IEEE 802.16 Working Group. The Chair will disclose this notification via the IEEE 802.16 web site ">http://ieee802.org/16/ipr/patents/notices> .		

MAC Enhancement to Support OFDMA MIMO

1 Introduction

This document describes the MAC enhancements to support the MIMO-OFDMA PHY. The following MAC features are proposed:

- DL burst assignment to support adaptive MIMO transmission
- UL burst assignment to support adaptive MIMO transmission
- Fast feedback channel operation to support SS dynamic feedback of MIMO mode and permutation selection

2 Proposed MAC Enhancement

2.1 DL Burst Assignment to Support Adaptive MIMO Transmission

To support adaptive MIMO mode, i.e. STTD and spatial multiplexing (SM), we modify the TD_Zone_IE() in comment #204 to indicate the switch between STTD and SM. We also introduce a new DL-MAP extended information element, MIMO_DL_Basic_IE, to assign burst profile per antenna for MIMO operation.

[Modify section 8.4.5.3.4]

8.4.5.3.4 Transmit diversity (TD)/Zone switch IE format

In the DL-MAP, a transmit diversity enabled BS (see 8.4.8) may transmit DIUC=15 with the TD_Zone_IE() to indicate that the subsequent allocations shall be use a specific permutation, or be transmit diversity encoded. No preceding downlink allocations shall be transmit diversity encoded and all subsequent downlink allocations until the end of the frame shall be transmit diversity encoded. The downlink frame shall start in PUSC mode with IDcell=0 and no transmit diversity. Allocations subsequent to this IE shall use the pemutation and transmit diversity mode it instructs. The STC matrix can be override on a per-assignment basis by that instructed in the MIMO_DL_Basic_IE() (see section 8.4.5.3.8).

Syntax	Size	Notes
TD <u>Zone</u> IE () {		
Extended DIUC	4 bits	$\frac{\text{STC} = 0x01, \text{FHDC} = 0x02}{\text{TD/Zone} = 0x01}$
Length	4 bits	Length = $0x0\theta 2$
Permutation	<u>2 bits</u>	00 = PUSC permutation
		01 = FUSC permutation
		10 = Optional FUSC permutation
		11 = Reserved
Use_All_SC_Indicator	<u>1 bit</u>	0 = Do not use all subchannels
		1 = Use all subchannels
Transmit_Diversity	<u>2 bits</u>	00 = No transmit diversity
		01 = STC using 2 antennas
		10 = STC using 4 antennas
		11 = FHDC
Matrix Indicator	<u>2 bits</u>	STC matrix (see 8.4.8.4.)
		if (Transmit_Diversity = 01)
		<u>{</u>
		00 = Matrix A
		01 = Matrix B
		10 - 11 = Reserved
		<u>}</u>
		elseif (Transmit_Diversity = 10)
		<u>{</u>
		00 = Matrix A
		01 = Matrix B
		10 = Matrix C

		$\frac{11 = \text{Reserved}}{11}$
IDcell	<u>6 bits</u>	
Reserved	<u>3 bits</u>	
}		

[Further, change the text below the table as follows]

Permutation

Indicates the permutation that shall be used by the transmitter for allocations following this IE. Permutation changes are only allowed on a zone boundry. The IDcell indicated by the IE shall be used as the basis of the permutation (see 8.4.6.1).

Use All SC indicator

When set, this indicator indicates transmission on all available subchannels. For FUSC permutation, transmission is always on all subchannels.

Transmit diversity

Indicates the transmit diversity mode that shall be used by the transmitter for allocations following this IE (see 8.4.8). The duration of the DIUC=15 TD_IE() allocation shall be zero. All allocations up to this allocation without transmit diversity shall be transmitted only from one antenna (antenna 0). The transmission in this allocation will be as specified in 8.4.8. After this allocation, All allocations with transmit diversity the BS shall transmit all allocations from both its antennas until the end of the allocations.

[Add a new section 8.4.5.3.8]

8.4.5.3.8 MIMO DL Basic IE format

In the DL-MAP, a MIMO-enabled BS may transmit DIUC=15 with the MIMO_DL_Basic_IE() to indicate the MIMO configuration of the subsequent downlink allocation to a specific MIMO-enabled SS' CID. The MIMO mode indicated in the MIMO_DL_Basic_IE() shall only apply to the subsequent downlink allocation until the end of frame.

Table x - MIMO DL Basic IE

<u>Syntax</u>	Size	Notes
MIMO_DL_Basic_IE () {		
Extended DIUC	4 bits	<u>0x05</u>
Length	<u>4 bits</u>	Length in bytes
Num Region	4 bits	<u>L'eligur ill'Oytes</u>
for ($i = 0$; $i < Num Region$;	4 01(5	-
$i++) \{$	-	-
OFDMA Symbol offset	10 bits	
Subchannel offset	<u>5 bits</u>	-
Boosting	<u>3 bits</u>	-
No. OFDMA Symbols	9 bits	-
No. subchannels	5 bits	-
Matrix indicator	2 bits	- STC matrix (see 8.4.8.4.)
		Transmit diversity = $\frac{1}{2}$
		transmit diversity mode
		indicated in the latest
		TD Zone IE().
		if (Transmit Diversity = 01)
		{
		00 = Matrix A
		01 = Matrix B
		10 - 11 = Reserved
		}
		elseif (Transmit Diversity =
		10)
		{
		00 = Matrix A
		01 = Matrix B
		10 = Matrix C
		11 = Reserved
		}
Num_layer	<u>2 bits</u>	
for $(j = 0; j < Num_layer; j++)$		
<u>{</u>		
if (INC_CID == 1) {		
CID	<u>16 bits</u>	
}		
Layer_index	<u>2 bits</u>	
DIUC	<u>4 bits</u>	0-11 burst profiles
<u>}</u>		
}		

[Add the following text below the table]

Num Region

This field indicates the number of the regions defined by OFDMA_Symbol_offset, Subchannel_offset, Boosting, No._OFDMA_Symbols and No._subchannels in this IE.

Matrix indicator

The values of these three bits indicate the STC matrix (see 8.4.8.4).

Num layer

The value of these 2 bits plus one indicate the number of MIMO transmission layers.

Layer_index

This field specifies the layer index.

2.2 UL Burst Assignment to Support Adaptive MIMO Transmission

We introduce a new extended information element, MIMO_UL_Basic_IE, to include information on the MIMO mode associated with the UL burst allocation.

[Add a new section 8.4.5.4.10]

8.4.5.4.10 MIMO UL Basic IE format

In the UL-MAP, a MIMO-enabled BS may transmit UIUC=15 with the MIMO_UL_Basic_IE() to indicate the MIMO mode of the subsequent uplink allocation to a specific MIMO-enabled SS' CID. The MIMO mode indicated in the MIMO_UL_Basic_IE() shall only apply to the subsequent uplink allocation until the end of frame.

Syntax	Size	Notes
MIMO_UL_Basic_IE () {	_	-
Extended UIUC	<u>4 bits</u>	<u>0x02</u>
Length	<u>4 bits</u>	Length in bytes
Num_Assign	<u>4 bits</u>	Number of burst assignment
For (i = 0; i < Num_assign; i+	+	_
) {		
CID	<u>16 bits</u>	SS basic CID
<u>UIUC</u>	<u>4 bits</u>	-
MIMO_Control	<u>1 bit</u>	For dual transmission capable SS 0: STTD;
		<u>1: SM</u>
		For Collaborative SM capable SS
		0: pilot pattern A; 1: pilot pattern B
Duration	<u>10 bits</u>	In OFDMA slots (see 8.4.3.1)

[*Add the following text below the table*]

Num assign

This field specifies the number of assignments in this IE.

MIMO Control

<u>MIMO_Control field specifies the MIMO mode of UL burst. For a dual transmission capable SS, the value of 0 indicates STTD</u> mode, the value of 1 indicates SM mode; For a collaborative SM capable SS, the value of 0 indicates pilot pattern A, the value of 1 indicates pilot pattern B.

2.3 Fast Feedback Channel Operation

The fast feedback channel can be used to report CQI as well as MIMO channel coefficient as described in IEEE 802.16d/D4. In addition, we propose to use the fast feedback channel to indicate the selection of MIMO mode, i.e. between STTD and SM, by the SS. We also propose to use the fast feedback channel to indicate the selection between PUSC/FUSC and adjacent-subcarrier permutation, by the SS.

For the abovementioned selection indications, we propose to support both slow reporting for fixed application as well as fast periodic reporting for mobile application.

2.3.1 MIMO and Permutation Modes Switch Indication

Slow mode switching can be implemented by BS polling the SS for its modes selection. The FAST-FEEDBACK subheader with feedback_type field of '11' is used for BS to obtain the indication of MIMO mode and permutation mode of a SS. The polling interval is implementation dependent. Once a SS receives such a FAST-FEEDBACK sub-header, the SS shall send its indication on its assigned fast feedback channel.

[Modify Section 6.4.2.3.7]

6.4.2.3.7 FAST-FEEDBACK allocation subheader

The format of the FAST-FEEDBACK allocation subheader is specified in Table 13. The FAST-FEEDBACK allocation subheader, when used, shall always be the last per-PDU subheader as specified in 6.4.2.3. The support of the FAST-FEEDBACK allocation subheader is PHY specification specific.

Table 13 FAST-FEEDBACK allocation subheader format

Syntax	Size	Notes
FAST-FEEDBACK allocation Subheader		
{		
Allocation offset	6 bits	
Feedback_type	2 bits	00 – Fast DL measurement
		01 – Fast MIMO feedback, antenna #0
		10 – Fast MIMO feedback, antenna #1
		<u>11 – MIMO mode and permutation mode</u>
		feedback
}		

[Add a new section 8.4.5.4.9.3]

8.4.5.4.9.3 Mode Selection Feedback

When the FAST-FEEDBACK subheader Feedback Type field is '11' or at a specific frame indicated in the CQICH_Alloc_IE(), the SS shall send its selection in terms of MIMO mode (STTD versus SM) or permutation mode on the assigned Fast-feedback channel. Table XX shows the encoding of payload bits.

Table XX. Encode of payload bits when Feedback_type = '11' in FAST-FEEDBACK subheader.

Value	Description
<u>0000</u>	STTD and PUSC/FUSC permutation
<u>0001</u>	STTD and adjacent-subcarrier permutation
<u>0010</u>	SM and PUSC/FUSC permutation
<u>0011</u>	SM and adjacent-subcarrier permutation
<u>0100 - 1111</u>	reserved

2.3.2 Dynamic CQICH Allocation with Fast Periodic MIMO / Permutation Feedback

The number of available CQICHs on the uplink is dependent on the amount of uplink sub-carriers and OFDM symbols allocated for the CQICHs. The fast CQI feedback represents non-negligible overhead on the uplink and therefore the CQICH resource should be dynamically allocated and de-allocated to different SSs. The dynamic allocation and de-allocation to different SSs should be done without incurring too much downlink signaling overhead. We therefore propose to allow the option of allocating/de-allocating the CQICH on a multiple-burst basis rather than on a per-burst basis.

A new UL-MAP IE, **CQICH_Alloc_IE()**, is introduced to dynamically allocated or de-allocated a CQICH to a SS. Once allocated, the SS transmit channel quality information on the assigned CQICH on every subsequent frames, until the SS receives a **CQICH_Alloc_IE()** to de-allocate the assigned CQICH. Fast periodic (with period specified in CQICH_Alloc_IE()) MIMO mode and permutation mode feedback is supported on the assigned CQICH.

When a SS is assigned a CQICH, there is a one-to-one mapping between the SS and the CQICH assigned. Therefore, we can replace the 16-bit basic CID by the smaller size CQICH_ID when allocating DL burst to the SS. We introduce a new information element on the DL-MAP, i.e. **MIMO_DL_Enhanced_IE()** to use CQICH_ID instead of CID to assign DL burst to the SS.

[Add a section 8.4.5.4.10 to allow the option of dynamic allocation/de-allocation of the CQICH on a multiple-burst basis]

8.4.5.4.10 CQICH Allocation IE Format

<u>CQICH_Alloc_IE()</u>, is introduced to dynamically allocate or de-allocate a CQICH to a SS. Once allocated, the SS transmit channel quality information on the assigned CQICH on every subsequent frames, until the SS receives a CQICH_Alloc_IE() to de-allocate the assigned CQICH.

1 able x - C	CQICH_Alloc_IE()	
<u>Syntax</u>	Size	Notes
CQICH_Alloc_IE() {		
Extended UIUC	4 bits	<u>0x03</u>
Length	<u>4 bits</u>	Length in bytes of following fields
CQICH ID	<u>variable</u>	Index to uniquely identify the
		CQICH resource assigned to the
		<u>SS</u>
		The size of this field is dependent on system parameter defined in
		DCD.
Allocation offset	6 bits	Index to the fast feedback channel
	0.0105	region marked by UIUC = 0 .
Period (=p)	2 bits	A CQI feedback is transmitted on
		the CQICH every 2p frames.
Frame offset	<u>3 bits</u>	The SS starts reporting at the
		frame of which the number has
		the same 3 LSB as the specified
		frame offset. If the current frame is specified, the SS should
		start reporting in 8 frames
Duration (=d)	3 bits	A CQI feedback is transmitted on
	5 6115	the CQI channels indexed by
		the CQICH_ID for 10 x 2 ^d
		frames. If d ==
		0, the CQI-CH is de-allocated. If d
		== 111, the SS should report
		until the BS command for the SS to stop.
MIMO permutation feedback cycle	2 bits	00 = No MIMO and permutation
	2 0115	mode feedback
		histo iououon
		01 = the MIMO and permutation
		mode indication shall be
		transmitted on the CQICH indexed
		by the CQICH_ID every 4 frames.
		The first indication is sent on the 8 th CQICH frame.
		<u>8 COICHT Itallie.</u>
		10 = the MIMO mode and
		permultation mode indication shall
		be transmitted on the CQICH
		indexed by the CQICH_ID every
		<u>8 frames. The first indication is</u> sent on the 8 th CQICH frame.
		sent on the 8 CQICH frame.
		11 = the MIMO mode and
		permultation mode indication shall
		be transmitted on the CQICH
		indexed by the CQICH_ID every
		16 frames. The first indication is
D 11		sent on the 16 th CQICH frame.
Padding	<u>Variable</u>	The padding bits is used to ensure the IE size is integer number of
		the IE size is integer number of bytes.
}	<u> </u>	<u>0 y tes.</u>
<u> </u>		

Table x –	CQICH	Alloc IE()

[add the following text below the table]

CQICH ID

The CQICH_ID uniquely identifies a fast feedback channel on which a SS can transmit fast feedback information. With this allocation, a one-to-one relationship is established between the CQICH_ID and the SS.

MIMO permutation feedback Cycle

This field specifies the MIMO and permutation mode fast feedback cycle. See Section 8.4.5.4.9.3 for fast feedback channel payload encoding for MIMO and permutation feedback.

[Add a new section 8.4.5.3.9 to use CQICH_ID for DL burst assignment]

8.4.5.3.9 MIMO DL Enhanced IE format

In the DL-MAP, a MIMO-enabled BS may transmit DIUC=15 with the MIMO_DL_Enhanced_IE() to indicate the MIMO mode of the subsequent downlink allocation to a specific MIMO-enabled SS identified by the CQICH_ID previously assigned to the SS. The MIMO mode indicated in the MIMO_DL_Enhanced_IE() shall only apply to the subsequent downlink allocation until the end of frame.

<u>Syntax</u>	Size	Notes
		1005
MIMO_DL_Enhanced_IE() {	-	-
Extended DIUC	4 bits	<u>0x06</u>
<u>Length</u>	4 bits	Length in bytes
Num_Region	<u>4 bits</u>	-
<u>for (i = 0; i< Num_Region; i++) {</u>	-	_
OFDMA Symbol offset	<u>10 bits</u>	
Subchannel offset	<u>5 bits</u>	_
Boosting	<u>3 bits</u>	
No. OFDMA Symbols	9 bits	
No. subchannels	<u>5 bits</u>	
Matrix indicator	2 bits	STC matrix (see 8.4.8.4.)
		<u>Transmit_diversity =</u>
		transmit diversity mode
		indicated in the latest
		TD Zone IE().
		if (Transmit Diversity =
		01)
		<u>01)</u> {
		100 = Matrix A
		$\frac{00 - Matrix A}{01 = Matrix B}$
		10 - 11 = Reserved
		10 - 11 = Reserved
		elseif (Transmit_Diversity
		= 10)
		<u>1</u>
		00 = Matrix A
		01 = Matrix B
		10 = Matrix C
		11 = Reserved
		<u>}</u>
<u>Num_layer</u>	<u>2 bits</u>	
<u>for $(j = 0; j < Num_layer; j++) = \{$</u>		
if (INC_CID == 1) {		
CQICH ID	<u>variable</u>	Index to uniquely identify the
		CQICH resource assigned to
		the SS

Table x - MIMO DL Enhanced IE

		The size of this field is dependent on system parameter defined in DCD.
<u>}</u>		
Layer index	<u>2 bits</u>	
DIUC	<u>4 bits</u>	0-11 burst profiles
}		
}		

[Add the following text below the table]

Num Region

This field indicates the number of the regions as defined by OFDMA_Symbol_offset, Subchannel_offset, Boosting, No._OFDMA_Symbols and No._subchannels in this IE.

Matrix indicator

The values of these three bits indicate the STC matrix (see section 8.4.8.4).

COICH_ID

This is the CQICH_ID assigned to a SS in the CQICH_Alloc_IE(). The CQICH_ID is used to uniquely identify a SS that is assigned a CQICH.

Num_layer

The values of these 2 bits indicate the number of MIMO transmission layers.

Layer index

This field specifies the layer index.

[Add the following rows to table 312]

Name	<u>Type</u>	Length	Value
Size of CQICH_ID field	<u>17</u>	1	$ \begin{array}{l} 0 = reserved \\ 1 = 3 bits \\ 2 = 4 bits \\ 3 = 5 bits \\ 4 = 6 bits \\ 5 = 7 bits \\ 6 = 8 bits \\ 7 = 9 bits \end{array} $

Table 312 DCD channel encodings