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Irregular Structured LDPC Codes
Victor Stolpman, Jianzhong (Charlie) Zhang, Nico van Waes

Nokia

Introduction:
Modern communication systems use Forward Error Correction (FEC) codes in an attempt to convey information
more reliably through channels with random events. One such FEC error control system use Low-Density Parity-
Check (LDPC) codes because of error correcting capabilities that rival the performance of the so-called Turbo-
Codes and for their applicability over a wide range of statistical channels [1,2,3]. In fact, some random irregular
LDPC constructions based on edge ensemble designs have error correcting capabilities measured in Bit Error Rate
(BER) that are within 0.05dB of the rate distorted Shannon limit for the AWGN channel [3].
Unfortunately, these random LPDC code constructions require long codeword constructions (on the order of 106

to 107 bits) in order to achieve these error rates, and despite good BER performance, these random code
constructions often have poor Block Error Rate (BLER) performances. Hence, these random constructions do not
lend themselves well to packet-based communication systems. Yet another disadvantage of random constructions
based on edge distribution ensembles is for each codeword length another random construction is needed. Thus,
communication systems employing variable block sizes (e.g. TCP/IP) would require multiple code definitions that
could consume a significant about of non-volatile memory storage for a large combination of codeword lengths
and code rates.
An alternative to random LDPC construction is structured LDPC constructions that rely on a general algorithmic
approach to constructing LDPC matrices and require much less non-volatile memory than random constructions.
Thus, the problem is to design irregular structured LDPC codes that have good overall error performance (both
BER and BLER) for a wide range of code rates and block sizes with attractive storage requirements. The result of
such LDPC codes is a better performing communication system with lower cost terminals. These factors make
such a FEC attractive for application over a wide range of products including but not limited to IEEE802.16 and
IEEE802.11n compliant products.
Thus, this exact description below for LDPC code construction succeeds at solving the above said problem while
out performing competing solutions [4] in overall error performance for similar block sizes and iterations without
the non-volatile memory requirements of randomly constructed codes.

Seed Matrix, Spreading Matrices and the Expanded LDPC Matrix:
In this section, we describe and define the binary “seed” parity-check matrix SEEDH  of dimension
( )( )SEEDSEEDSEED NKN ×−  with the code rate defined as SEEDSEED NK . Simply, the seed matrix SEEDH  is a starting

matrix used to generate expanded LDPC parity-check matrices H  through a spreading process. In the
“Simulation Results” section, we specifically define three seed matrices for code rates 1/2, 2/3, and 3/4 of
dimensions ( )5226× , ( )6120× , and ( )5614×  respectively that solves the earlier stated problem definition. Also it
is important to note that these given seed matrices are nearly upper triangular, and as a result all expanded LDPC
matrices using these seeds in the following described approach will also have a nearly upper triangular construction
that lend themselves well for encoding purposes (i.e. near linear encoding complexity with respect to codeword
length) [5].
The purpose of these seed matrices is to identify the location and type of sub-matrices in the expanded LDPC
parity-check matrix H  constructed from expanding SEEDH  with a given set of spreading matrices where all
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elements of the set are of dimension ( )SPREADSPREAD NN × . The ones in SEEDH determine the location of sub-
matrices in the expanded matrix H  that contain a spreading matrix from the following set of matrices

{ }1
SPREAD

2
SPREAD

1
SPREAD

0
SPREADSPREAD ,,,,, −∞ pPPPPP K

where p  is a positive prime integer (to be define specifically later), ∞
SPREADP  denotes the all zeros matrix 0  (i.e.

0P =∞
SPREAD  where every matrix element is a zero), IP =0

SPREAD  is the identity matrix, 1
SPREADP  is a full-rank

permutation matrix, 1
SPREAD

1
SPREAD

2
SPREAD PPP = , and so on in like fashion up to ( ) 11

SPREAD
1

SPREAD

−− =
pp PP . Specifically,

we define 1
SPREADP  here as the single circular-shift permutation matrix, e.g. for 5SPREAD =N
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The zeros in SEEDH  indicate the location of the sub-matrix 0P =∞
SPREAD  in the expanded matrix H . Thus, the

expanded LDPC matrix H  is of dimension ( )NKN ×− )(  where SEEDSPREADNNN =  and SEEDSPREADKNK =  with
sub-matrices consisting of permutation matrices of dimension ( )SPREADSPREAD NN ×  raised to an exponential power
from the set of },1,...,1,0{ ∞−p , or simply in matrix form
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where },1,...,1,0{, ∞−∈ pF ji  for ( )SEEDSEED,,2,1 KNi −= K  and SEED,,2,1 Nj K= . In matrix form, the final
exponential matrix is
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F

and is of same dimension as the SEEDH , ( )( )SEEDSEEDSEED NKN ×− . The selection of the jiF ,  matrix elements of the
set },1,...,1,0{ ∞−p  uses SEEDH and is described further in the following section.
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Exponent Matrix Construction:
Specifically, let p  be defined as the smallest prime integer that satisfies both pN ≤+ 2SEED  and pN ≤SPREAD . We
then define an interim exponent array matrix as
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

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where pjiE ji mod)1)(1(, −−= .

Finally, we construct the exponential matrix F  used in the expanded LDPC matrix H  by replacing each one in
SEEDH  with the corresponding matrix element (i.e. same row and column) in the interim exponent matrix

EXPONENTE , and we replace each zero in SEEDH  with ∞ . Thus, the elements of F  belong to the set },1,...,1,0{ ∞−p

when using modulo- p arithmetic in the construction of EXPONENTE .

A Small Construction Example:
For example purposes only, let
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SEEDH  thus 6SEED =N ,

and let
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1
SPREADP thus 3SPREAD =N ,

so 11=p  is the smallest prime number that satisfies the specified conditions pN ≤+ 2SEED  and pN ≤SPREAD .
Then, the interim and final exponent matrices as defined above are
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∞
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F ,

and the expanded LDPC matrix is
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Structured Puncturing:
In this section, we introduce a “seed” puncture-degree sequence 1,SEEDd  of dimension ( )11 ×L

[ ]TLddd )1()1(
2

)1(
11,SEED 1

L=d

where each element )1(
id  indicates the degree of a variable node corresponding to a codeword element to be

punctured in the code defined by SEEDH . We expand this seed puncture sequence to create an expanded

puncture-degree sequence DEGREEp  of dimension ( )( )1SEED1 ×NNL  that contain the variable-degrees

corresponding to the columns of the expanded parity-check matrix H  of dimension ( )NKN ×− )(
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


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where each element ip  indicates the degree of a variable node corresponding to a codeword element to be

punctured in the expanded code defined by H  and ⊗  represents the Kronecker product. To offer more
flexibility in degree selection, multiple seed sets can be used m,SEEDd  of possible different dimensions ( )1×mL  for

Mm ,,2,1 K=

[ ]Tm
L

mm
m m

ddd )()(
2

)(
1,SEED L=d  for Mm ,,2,1 K=
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corresponding to the degrees to puncture in an intermediate expanded parity-check matrix mH  of dimension

( )SEEDSEEDSEED )( mNKNm ×−  where mN =SPREAD . Although there is no limit on the maximum value of m , it is

desirable to keep storage costs low and hence keep M  as a small number (in this report we have used
{ }5,4,3,2,1∈m ).

Then, the expanded puncture-degree sequence DEGREEp  of dimension ( )( )1SEED ×mNNLm  can be constructed in a

similar fashion as above that contains the variable-degrees corresponding to the columns of the expanded parity-
check matrix H  of dimension ( )NKN ×− )(  where SEEDmNN  is a positive integer.

[ ] [ ]

[ ]



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
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


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L
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L
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T
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44 344 21 LL

1dp

where each element ip  indicates the degree of a variable node corresponding to a codeword element to be

punctured in the expanded code defined by H .

The degree-puncture sequence DEGREEp  is then mapped to variable node-puncture nodes NODEv  where each

element iv  has the degree ip  for ( )SEED,,2,1 mNNLi mK= ,







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


=→







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SEED

21NODEDEGREE

mN
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TT

m
vvv Lvp

where { }Nvi ,,2,1 K∈  for 







=

SEED

,,2,1
mN

NL
i mK  and elements from the set { }N,,2,1 K  occur at most once with in

the variable node puncture sequence NODEv  (i.e. cannot puncture the same codeword element twice). Although

further optimization can be done in the future, for this document the mapping approach used the very first
variable-nodes (starting in the left most column of H  and moving right) that have degrees corresponding to order
of degree elements in DEGREEp .
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In order to achieve a particular effective code rate from a mother code H  of dimension ))(( NKN ×− , say

PN
K

R
−

=EFF  where ( ){ }SEED,,2,1,0 mNNLP mK∈  for Mm ,,2,1 K= ,

we use the very first P  elements of T
NODEv  (i.e. [ ]Pvvv L21 ) to puncture code word elements. This nested

structure to puncturing, reduces storage complexity and can achieve all the possible code rates, i.e.









+−−
∈

K
K

K
K

N
K

N
K

N
K

R ,
1

,,
2

,
1

,EFF K

provided NODEv  is long enough. By puncturing codeword elements, there is no need to change the connective net

for multiple code rates given that the effective code rate is within the mother codes capability (i.e.
implementation friendly). Of course, there is a useful range of code rates of which outside performance will
suffer as with most punctured error correction codes.
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Rate 1/2 Irregular Seed Parity-Check Matrix:
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1000000001100000000010110000010000000000000000000000

1000100010001000001000100000000000000000010000000000

0000000101010000000100000000000100000000110000000000

0101001000100000000000000000001000000001100000000000

1000001010100100000000000000000000000011000000000000

0100000101010000010000000000000000000110000000000000

0010001001010001000000000000000000001100000000000000

0100100110000010000000000000000000011000000000000000
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0000001110010000000001000000000001100000000000000000

1100000001100001000000000001000011000000000000000000

0100100100100000000100000000000010000000000000000001

0001001001010000000010000000000000000000000000000011

1000010010001000100000000000000000000000000000000110

1000001000110000000001000000000000000000000000001100

0110000111000001000000000000000000000000000000011000

0000000101010100000100000000001000000000000000110000

0100100010000000001000000000101000000000000001100000

1000001000100000000010000000110000000000000011000000

1001001010000110000000000000000000000000000110000000
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Rate 2/3 Irregular Seed Parity-Check Matrix:
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0011011000001100000000000000000100001001000000001110000000000

0100000101100000011110010000001000000000000000011000000000000

1110011000000000100000000100100010000001000000110000000000000

0101101100100000000000010001000100100000000001100000000000000

0100010110100010000000000000001000100100100011000000000000000

0001011010000110000001101001000000000000000110000000000000000

0101101011000000100000000000010001000100001100000000000000000

1110110111000000000000000000010000000000111000000000000000000

1010001010110000010000100001000000000010010000000000000000001

1101010101000000000010000100000010000010000000000000000000011

1000110100100000000100100100000000110000000000000000000000110

0101101011101000000000000000010000010000000000000000000001100

1011101001000000000011000010000000001000000000000000000011000

1010110101100000100000001000000100000000000000000000000110000

0110010010100100001000000000100001000001000000000000001100000

1011001000010000000100000010000001010010000000000000011000000

0001100111000010001001000000100000000100000000000000110000000

0110111000101000000000000010000000001000100000000001100000000

1010100111000001010000001000000010000000000000000011000000000

SEED,61H
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Rate 3/4 Irregular Seed Parity-Check Matrix:



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11110100011110100010000000010001000000110100000000000000

11111011100011110000000000000000010001100000010000000000

01011100000001011000000111100100100011000100000000000000

10110110000110010000111010000000000010000011000000000001

11101000000011110111000001000000000000000100010000000011

00001100110011000000010100010010010100001000100000000110

11111100000010110000100001101001000000000000000000001100

11000100000011101001001100000010100000010001000000011000

01111000010011110000100010001000001000001000000000110000

10010101000101010100001000010100010000000010010001100000

11111100100001110000010000100000001100000000000011000000

10111110000011110001000000000000100000001000100110000000

01111100000010110010000000001110000000000001101100000000

11101001001001101100000000000001001100010010001000000000

SEED,56H
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Simulation Results:

The proposed codes are evaluated and compared with Samsung’s structured codes [4].  The results are organized
into two subsections. The first subsection includes the results for a minimal set of length n=1152, rate r = 1/2 
code,  n =1728, r=2/3 code and  n = 2304, r= 3/4  code.  The second subsection includes the additional results
required for the structured codes, including, r=1/2, n=576, 1728, 2304 codes;  r = 2/3, n= 576, 1152, 2304 codes
and r = 3/4, n = 576, 1152, 1728 codes.  All simulations used 50 iterations of the conventional Sum-Product-
Algorithm (SPA).
Since our current seed matrix sizes are not exact multiples of 48 (this can easily be changed in future version under
this construction scheme) our codes do not match the above “nominal” code rates and block sizes at the same
time.  Instead, here we present two sets of codes with rates/code word lengths close to these nominal values. The
first set matches the code rate requirement, and they are represented by the red curves in the plots. These are
designed to match the nominal code rates at the expense of slightly longer or shorter codeword lengths. The other
set matches the codeword length requirement, and they are represented by the black curves in the plots. These used
a mother code exceeding the length requirement and punctured to match the nominal code word lengths while
allowing for slightly higher deviations from the nominal code rate.
At the end, additional simulation results for various punctured sets are included as to show demonstrate the rate-
compatibilities of these codes. These sets are constructed via structured puncturing use an irregular structured
mother code generated from the seed matrices and a puncture-degree sequence.
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Minimum Set of Simulations
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Figure 1. Performance of  n=1152, r = 1/2 code.  AWGN channel, BPSK.
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Nokia length 1708 code, Rate 0.672
Nokia length 1728 code, Rate 0.688

Figure 2. Performance of  n=1728, r = 2/3 code.  AWGN channel, BPSK.



2004-09-20 IEEE C802.16e-04/264

 13

1.5 2 2.5 3 3.5 4 4.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 2304 code, Rate 0.750
Nokia length 2296 code, Rate 0.750
Nokia length 2304 code, Rate 0.766

Figure 3. Performance of  n=2304,  r = 3/4 code.  AWGN channel, BPSK.

Additional Set of Simulations
r = 1/2, n = 576, 1728, 2304

0 0.5 1 1.5 2 2.5 3 3.5 4
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10-1

100
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E
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Eb/No dB

Samsung length 576 code, Rate 0.500
Nokia length 572 code, Rate 0.500
Nokia length 576 code, Rate 0.542

Figure 4. Performance of  n=576,  r = 1/2 code.  AWGN channel, BPSK.
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Nokia length 1728 code, Rate 0.512

Figure 5. Performance of  n=1728,  r = 1/2 code.  AWGN channel, BPSK.
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Nokia length 2288 code, Rate 0.500
Nokia length 2304 code, Rate 0.508

Figure 6. Performance of  n=2304,  r = 1/2 code.  AWGN channel, BPSK.

r = 2/3, n = 576, 1152, 2304
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Nokia length 610 code, Rate 0.672
Nokia length 576 code, Rate 0.712

Figure 7. Performance of  n=576,  r = 2/3 code.  AWGN channel, BPSK.
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Nokia length  1152 code, Rate 0.676

Figure 8. Performance of  n=1152,  r = 2/3 code.  AWGN channel, BPSK.
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Figure 9. Performance of  n=2304,  r = 2/3 code.  AWGN channel, BPSK.

r = 3/4, n = 576, 1152, 1728
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Figure 10. Performance of  n=576,  r = 3/4 code.  AWGN channel, BPSK.
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Figure 11. Performance of  n=1152,  r = 3/4 code.  AWGN channel, BPSK.
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Figure 12. Performance of  n=1728,  r = 3/4 code.  AWGN channel, BPSK.
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Rate-Compatible Simulations:

Rate 1/2 Mother Code:

0 1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N2340 M1170 53Nokia45 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.500, N=2340, K=1170
Rate 0.527, N=2221, K=1170
Rate 0.557, N=2101, K=1170
Rate 0.591, N=1981, K=1170
Rate 0.629, N=1861, K=1170
Rate 0.672, N=1742, K=1170
Rate 0.721, N=1622, K=1170
Rate 0.779, N=1502, K=1170
Rate 0.847, N=1382, K=1170
Rate 0.927, N=1262, K=1170

Figure 13:  Rate 1/2 mother code using 45SPREAD =N  and the following nested seed puncture-degree sequence.

T10] 10, 2, 3, 2, 3, 10,2, 10, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2,                

2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,                

 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 10, 4, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, [5,SEED =d
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Rate 2/3 Mother Code Example:

1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N1769 M580 61Nokia29 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.672, N=1769, K=1189
Rate 0.694, N=1714, K=1189
Rate 0.717, N=1658, K=1189
Rate 0.742, N=1602, K=1189
Rate 0.769, N=1546, K=1189
Rate 0.797, N=1491, K=1189
Rate 0.829, N=1435, K=1189
Rate 0.862, N=1379, K=1189
Rate 0.899, N=1323, K=1189
Rate 0.938, N=1267, K=1189

Figure 14: Rate 2/3 mother code using 29SPREAD =N  and the following nested seed puncture-degree sequence
T] 10 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 10, 10,[1,SEED =d
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Rate 2/3 Mother Code Example:

1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N2318 M760 61Nokia38 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.672, N=2318, K=1558
Rate 0.694, N=2245, K=1558
Rate 0.718, N=2171, K=1558
Rate 0.743, N=2097, K=1558
Rate 0.770, N=2023, K=1558
Rate 0.799, N=1950, K=1558
Rate 0.830, N=1876, K=1558
Rate 0.865, N=1802, K=1558
Rate 0.902, N=1728, K=1558
Rate 0.942, N=1654, K=1558

Figure 15: Rate 2/3 mother code using 38SPREAD =N  and the following nested seed puncture-degree sequence

T3] 10, 10, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 10, 10, 10,[2,SEED =d
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Rate 3/4 Mother Code Example:

1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N2352 M588 56Nokia42 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.750, N=2352, K=1764
Rate 0.768, N=2297, K=1764
Rate 0.787, N=2242, K=1764
Rate 0.807, N=2186, K=1764
Rate 0.828, N=2131, K=1764
Rate 0.850, N=2076, K=1764
Rate 0.873, N=2020, K=1764
Rate 0.898, N=1965, K=1764
Rate 0.924, N=1910, K=1764
Rate 0.951, N=1854, K=1764

Figure 16: Rate 3/4 mother code using 42SPREAD =N  and the following nested seed puncture-degree sequence.

T2] 10, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 10, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 10, 10, 10,  [3,SEED =d



2004-09-20 IEEE C802.16e-04/264

 22

References:
[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. IT-8, pp.21-28, Jan.

1962.

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of Capacity Approaching Irregular
Low-Density Parity-Check Codes,” IEEE Transactions on Information Theory, vol. 47, pp. 619-637,
Feb. 2001.

[3] Sae-Young Chung, On the Construction of Some Capacity-Approaching Coding Schemes, PhD
Dissertation, MIT, 2000.

[4] P. Joo, et al., “LDPC coding for OFDMA PHY,” IEEE C802.16d-04/86r1, http://ieee802.org/16, May
2004.

[5] T. J. Richardson and R. L. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,” IEEE
Transactions on Information Theory, vol. 47, pp. 638-656, Feb. 2001.


