
2004-09-20 IEEE C802.16e-04/264

 0

Project IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

Title Irregular Structured LDPC Codes

Date
Submitted

2004-08-17

Source(s) Victor Stolpman, Jianzhong (Charlie)
Zhang, Nico van Waes
Nokia
6000 Connection Drive
Irving, TX 75039

Voice: 972-374-0958
Fax: 972-894-5937
victor.stolpman@nokia.com, charlie.zhang@nokia.com,
nico.vanwaes@nokia.com

Re: Recirculation ballot 14c (80216-04/50)

Abstract In this document, we describe a structured approach to irregular LDPC code construction based on
“seed” matrices that are expanded using permutation matrices for purposes of error correction
control. These codes have small storage requirements with good block error rate performances over
a wide range block sizes. Also described in this document is a structured approach to puncturing
irregular LDPC codes facilitate rate-compatibility without having to modify the connective net in
the encoder or decoder while still offering a wide range of code rates for link optimization.

This document, while a full description of LDPC code construction by itself, currently contains no
specific implementation language, as it is intended primarily as placeholder for ongoing
harmonization efforts.

Purpose Adoption of proposed text as optional feature.

Notice This document has been prepared to assist IEEE 802.16. It is offered as a basis for discussion and is not binding on
the contributing individual(s) or organization(s). The material in this document is subject to change in form and
content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained
herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution,
and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name
any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole
discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

2004-09-20 IEEE C802.16e-04/264

 1

Patent
Policy and
Procedures

The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures
<http://ieee802.org/16/ipr/patents/policy.html>, including the statement "IEEE standards may
include the known use of patent(s), including patent applications, provided the IEEE receives
assurance from the patent holder or applicant with respect to patents essential for compliance with
both mandatory and optional portions of the standard." Early disclosure to the Working Group of
patent information that might be relevant to the standard is essential to reduce the possibility for
delays in the development process and increase the likelihood that the draft publication will be
approved for publication. Please notify the Chair <mailto:chair@wirelessman.org> as early as
possible, in written or electronic form, if patented technology (or technology under patent
application) might be incorporated into a draft standard being developed within the IEEE 802.16
Working Group. The Chair will disclose this notification via the IEEE 802.16 web site
<http://ieee802.org/16/ipr/patents/notices>.

2004-09-20 IEEE C802.16e-04/264

 2

Irregular Structured LDPC Codes
Victor Stolpman, Jianzhong (Charlie) Zhang, Nico van Waes

Nokia

Introduction:
Modern communication systems use Forward Error Correction (FEC) codes in an attempt to convey information
more reliably through channels with random events. One such FEC error control system use Low-Density Parity-
Check (LDPC) codes because of error correcting capabilities that rival the performance of the so-called Turbo-
Codes and for their applicability over a wide range of statistical channels [1,2,3]. In fact, some random irregular
LDPC constructions based on edge ensemble designs have error correcting capabilities measured in Bit Error Rate
(BER) that are within 0.05dB of the rate distorted Shannon limit for the AWGN channel [3].
Unfortunately, these random LPDC code constructions require long codeword constructions (on the order of 106

to 107 bits) in order to achieve these error rates, and despite good BER performance, these random code
constructions often have poor Block Error Rate (BLER) performances. Hence, these random constructions do not
lend themselves well to packet-based communication systems. Yet another disadvantage of random constructions
based on edge distribution ensembles is for each codeword length another random construction is needed. Thus,
communication systems employing variable block sizes (e.g. TCP/IP) would require multiple code definitions that
could consume a significant about of non-volatile memory storage for a large combination of codeword lengths
and code rates.
An alternative to random LDPC construction is structured LDPC constructions that rely on a general algorithmic
approach to constructing LDPC matrices and require much less non-volatile memory than random constructions.
Thus, the problem is to design irregular structured LDPC codes that have good overall error performance (both
BER and BLER) for a wide range of code rates and block sizes with attractive storage requirements. The result of
such LDPC codes is a better performing communication system with lower cost terminals. These factors make
such a FEC attractive for application over a wide range of products including but not limited to IEEE802.16 and
IEEE802.11n compliant products.
Thus, this exact description below for LDPC code construction succeeds at solving the above said problem while
out performing competing solutions [4] in overall error performance for similar block sizes and iterations without
the non-volatile memory requirements of randomly constructed codes.

Seed Matrix, Spreading Matrices and the Expanded LDPC Matrix:
In this section, we describe and define the binary “seed” parity-check matrix SEEDH of dimension
()()SEEDSEEDSEED NKN ×− with the code rate defined as SEEDSEED NK . Simply, the seed matrix SEEDH is a starting

matrix used to generate expanded LDPC parity-check matrices H through a spreading process. In the
“Simulation Results” section, we specifically define three seed matrices for code rates 1/2, 2/3, and 3/4 of
dimensions ()5226× , ()6120× , and ()5614× respectively that solves the earlier stated problem definition. Also it
is important to note that these given seed matrices are nearly upper triangular, and as a result all expanded LDPC
matrices using these seeds in the following described approach will also have a nearly upper triangular construction
that lend themselves well for encoding purposes (i.e. near linear encoding complexity with respect to codeword
length) [5].
The purpose of these seed matrices is to identify the location and type of sub-matrices in the expanded LDPC
parity-check matrix H constructed from expanding SEEDH with a given set of spreading matrices where all

2004-09-20 IEEE C802.16e-04/264

 3

elements of the set are of dimension ()SPREADSPREAD NN × . The ones in SEEDH determine the location of sub-
matrices in the expanded matrix H that contain a spreading matrix from the following set of matrices

{ }1
SPREAD

2
SPREAD

1
SPREAD

0
SPREADSPREAD ,,,,, −∞ pPPPPP K

where p is a positive prime integer (to be define specifically later), ∞
SPREADP denotes the all zeros matrix 0 (i.e.

0P =∞
SPREAD where every matrix element is a zero), IP =0

SPREAD is the identity matrix, 1
SPREADP is a full-rank

permutation matrix, 1
SPREAD

1
SPREAD

2
SPREAD PPP = , and so on in like fashion up to () 11

SPREAD
1

SPREAD

−− =
pp PP . Specifically,

we define 1
SPREADP here as the single circular-shift permutation matrix, e.g. for 5SPREAD =N























=

01000

00100

00010

00001

10000

1
SPREADP .

The zeros in SEEDH indicate the location of the sub-matrix 0P =∞
SPREAD in the expanded matrix H . Thus, the

expanded LDPC matrix H is of dimension ()NKN ×−)(where SEEDSPREADNNN = and SEEDSPREADKNK = with
sub-matrices consisting of permutation matrices of dimension ()SPREADSPREAD NN × raised to an exponential power
from the set of },1,...,1,0{ ∞−p , or simply in matrix form





















=

−−− SEED),SEEDSEED(2),SEEDSEED(1),SEEDSEED(

SEED,22,21,2

SEED,12,11,1

SPREADSPREADSPREAD

SPREADSPREADSPREAD

SPREADSPREADSPREAD

NKNKNKN

N

N

FFF

FFF

FFF

PPP

PPP

PPP

H

L
MOMM

L
L

where },1,...,1,0{, ∞−∈ pF ji for ()SEEDSEED,,2,1 KNi −= K and SEED,,2,1 Nj K= . In matrix form, the final
exponential matrix is

() () () 



















=

−−− SEEDSEEDSEEDSEEDSEEDSEEDSEED

SEED

SEED

,2,1,

,22,21,2

,12,11,1

NKNKNKN

N

N

FFF

FFF

FFF

L
MOMM

L
L

F

and is of same dimension as the SEEDH , ()()SEEDSEEDSEED NKN ×− . The selection of the jiF , matrix elements of the
set },1,...,1,0{ ∞−p uses SEEDH and is described further in the following section.

2004-09-20 IEEE C802.16e-04/264

 4

Exponent Matrix Construction:
Specifically, let p be defined as the smallest prime integer that satisfies both pN ≤+ 2SEED and pN ≤SPREAD . We
then define an interim exponent array matrix as























∞∞∞

∞=

++−+−

−−−

−−

+−

)2(),1(1),1(

)1(,4)2(,42,41,4

,3)1(,33,32,31,3

)1(,2)(,24,23,22,2

EXPONENT

SEEDSEEDSEEDSEEDSEED

SEEDSEEDSEED

SEEDSEEDSEED

SEEDSEEDSEED

KKNKN

NKN

NKN

NKN

EE

EEEE

EEEEE

EEEEE

LL
MOMOOMM

LL
LL
LL

E

where pjiE ji mod)1)(1(, −−= .

Finally, we construct the exponential matrix F used in the expanded LDPC matrix H by replacing each one in
SEEDH with the corresponding matrix element (i.e. same row and column) in the interim exponent matrix

EXPONENTE , and we replace each zero in SEEDH with ∞ . Thus, the elements of F belong to the set },1,...,1,0{ ∞−p

when using modulo- p arithmetic in the construction of EXPONENTE .

A Small Construction Example:
For example purposes only, let



















=

110100

100110

011011

001001

SEEDH thus 6SEED =N ,

and let

















=

010

001

100
1
SPREADP thus 3SPREAD =N ,

so 11=p is the smallest prime number that satisfies the specified conditions pN ≤+ 2SEED and pN ≤SPREAD .
Then, the interim and final exponent matrices as defined above are



















∞∞

∞
=

1840

19630

1086420

654321

EXPONENTE and


















∞∞∞

∞∞∞

∞∞

∞∞∞∞

=

180

130

8620

41

F ,

and the expanded LDPC matrix is

2004-09-20 IEEE C802.16e-04/264

 5













































=

010001000100000000

001100000010000000

100010000001000000

010000000100100000

001000000010010000

100000000001001000

000001100000001100

000100010000100010

000010001000010001

000000010000000010

000000001000000001

000000100000000100

H .

Structured Puncturing:
In this section, we introduce a “seed” puncture-degree sequence 1,SEEDd of dimension ()11 ×L

[]TLddd)1()1(
2

)1(
11,SEED 1

L=d

where each element)1(
id indicates the degree of a variable node corresponding to a codeword element to be

punctured in the code defined by SEEDH . We expand this seed puncture sequence to create an expanded

puncture-degree sequence DEGREEp of dimension ()()1SEED1 ×NNL that contain the variable-degrees

corresponding to the columns of the expanded parity-check matrix H of dimension ()NKN ×−)(














=⊗=



























×

SEED

1

SEED

21
1

1,SEEDDEGREE

N

NL

N

N

TT ppp L1dp

where each element ip indicates the degree of a variable node corresponding to a codeword element to be

punctured in the expanded code defined by H and ⊗ represents the Kronecker product. To offer more
flexibility in degree selection, multiple seed sets can be used m,SEEDd of possible different dimensions ()1×mL for

Mm ,,2,1 K=

[]Tm
L

mm
m m

ddd)()(
2

)(
1,SEED L=d for Mm ,,2,1 K=

2004-09-20 IEEE C802.16e-04/264

 6

corresponding to the degrees to puncture in an intermediate expanded parity-check matrix mH of dimension

()SEEDSEEDSEED)(mNKNm ×− where mN =SPREAD . Although there is no limit on the maximum value of m , it is

desirable to keep storage costs low and hence keep M as a small number (in this report we have used
{ }5,4,3,2,1∈m).

Then, the expanded puncture-degree sequence DEGREEp of dimension ()()1SEED ×mNNLm can be constructed in a

similar fashion as above that contains the variable-degrees corresponding to the columns of the expanded parity-
check matrix H of dimension ()NKN ×−)(where SEEDmNN is a positive integer.

[] []

[]














=

=

⊗=

⊗=














































×

SEED

SEED

SEED

SEED

21

)()()()(
2

)(
2

)(
2

)(
1

)(
1

)(
1

)()(
2

)(
1

1
,SEEDDEGREE

111

mN

NL

mN

NL

m
L

m
L

m
L

mmmmmm

mN

N

m
L

mm

mN

N

T
m

T

m

m

mmm

m

ppp

ddddddddd

ddd

L

44444444444444 344444444444444 21 LLLL

44 344 21 LL

1dp

where each element ip indicates the degree of a variable node corresponding to a codeword element to be

punctured in the expanded code defined by H .

The degree-puncture sequence DEGREEp is then mapped to variable node-puncture nodes NODEv where each

element iv has the degree ip for ()SEED,,2,1 mNNLi mK= ,














=→










SEED

21NODEDEGREE

mN

NL

TT

m
vvv Lvp

where { }Nvi ,,2,1 K∈ for 







=

SEED

,,2,1
mN

NL
i mK and elements from the set { }N,,2,1 K occur at most once with in

the variable node puncture sequence NODEv (i.e. cannot puncture the same codeword element twice). Although

further optimization can be done in the future, for this document the mapping approach used the very first
variable-nodes (starting in the left most column of H and moving right) that have degrees corresponding to order
of degree elements in DEGREEp .

2004-09-20 IEEE C802.16e-04/264

 7

In order to achieve a particular effective code rate from a mother code H of dimension))((NKN ×− , say

PN
K

R
−

=EFF where (){ }SEED,,2,1,0 mNNLP mK∈ for Mm ,,2,1 K= ,

we use the very first P elements of T
NODEv (i.e. []Pvvv L21) to puncture code word elements. This nested

structure to puncturing, reduces storage complexity and can achieve all the possible code rates, i.e.









+−−
∈

K
K

K
K

N
K

N
K

N
K

R ,
1

,,
2

,
1

,EFF K

provided NODEv is long enough. By puncturing codeword elements, there is no need to change the connective net

for multiple code rates given that the effective code rate is within the mother codes capability (i.e.
implementation friendly). Of course, there is a useful range of code rates of which outside performance will
suffer as with most punctured error correction codes.

2004-09-20 IEEE C802.16e-04/264

 8

Rate 1/2 Irregular Seed Parity-Check Matrix:

























































































=

0110001010000000100000000011000000000000000000000000

1000010100100000010000000110000000000000000000000000

0001000001010010000001001100000000000000000000000000

0100001110010000000000011000000000000000000000000000

1000000001100000000010110000010000000000000000000000

1000100010001000001000100000000000000000010000000000

0000000101010000000100000000000100000000110000000000

0101001000100000000000000000001000000001100000000000

1000001010100100000000000000000000000011000000000000

0100000101010000010000000000000000000110000000000000

0010001001010001000000000000000000001100000000000000

0100100110000010000000000000000000011000000000000000

1000010000100000001000000000000100110000000000000000

0000001110010000000001000000000001100000000000000000

1100000001100001000000000001000011000000000000000000

0100100100100000000100000000000010000000000000000001

0001001001010000000010000000000000000000000000000011

1000010010001000100000000000000000000000000000000110

1000001000110000000001000000000000000000000000001100

0110000111000001000000000000000000000000000000011000

0000000101010100000100000000001000000000000000110000

0100100010000000001000000000101000000000000001100000

1000001000100000000010000000110000000000000011000000

1001001010000110000000000000000000000000000110000000

0000000100111000100000000000010000000000001100000000

0100010001000000010000000001100100000000001000000000

SEED,53H

2004-09-20 IEEE C802.16e-04/264

 9

Rate 2/3 Irregular Seed Parity-Check Matrix:





































































=

1001000111110001000000010000001000000000000000000110000000000

0011011000001100000000000000000100001001000000001110000000000

0100000101100000011110010000001000000000000000011000000000000

1110011000000000100000000100100010000001000000110000000000000

0101101100100000000000010001000100100000000001100000000000000

0100010110100010000000000000001000100100100011000000000000000

0001011010000110000001101001000000000000000110000000000000000

0101101011000000100000000000010001000100001100000000000000000

1110110111000000000000000000010000000000111000000000000000000

1010001010110000010000100001000000000010010000000000000000001

1101010101000000000010000100000010000010000000000000000000011

1000110100100000000100100100000000110000000000000000000000110

0101101011101000000000000000010000010000000000000000000001100

1011101001000000000011000010000000001000000000000000000011000

1010110101100000100000001000000100000000000000000000000110000

0110010010100100001000000000100001000001000000000000001100000

1011001000010000000100000010000001010010000000000000011000000

0001100111000010001001000000100000000100000000000000110000000

0110111000101000000000000010000000001000100000000001100000000

1010100111000001010000001000000010000000000000000011000000000

SEED,61H

2004-09-20 IEEE C802.16e-04/264

 10

Rate 3/4 Irregular Seed Parity-Check Matrix:



















































=

11110100011110100010000000010001000000110100000000000000

11111011100011110000000000000000010001100000010000000000

01011100000001011000000111100100100011000100000000000000

10110110000110010000111010000000000010000011000000000001

11101000000011110111000001000000000000000100010000000011

00001100110011000000010100010010010100001000100000000110

11111100000010110000100001101001000000000000000000001100

11000100000011101001001100000010100000010001000000011000

01111000010011110000100010001000001000001000000000110000

10010101000101010100001000010100010000000010010001100000

11111100100001110000010000100000001100000000000011000000

10111110000011110001000000000000100000001000100110000000

01111100000010110010000000001110000000000001101100000000

11101001001001101100000000000001001100010010001000000000

SEED,56H

2004-09-20 IEEE C802.16e-04/264

 11

Simulation Results:

The proposed codes are evaluated and compared with Samsung’s structured codes [4]. The results are organized
into two subsections. The first subsection includes the results for a minimal set of length n=1152, rate r = 1/2
code, n =1728, r=2/3 code and n = 2304, r= 3/4 code. The second subsection includes the additional results
required for the structured codes, including, r=1/2, n=576, 1728, 2304 codes; r = 2/3, n= 576, 1152, 2304 codes
and r = 3/4, n = 576, 1152, 1728 codes. All simulations used 50 iterations of the conventional Sum-Product-
Algorithm (SPA).
Since our current seed matrix sizes are not exact multiples of 48 (this can easily be changed in future version under
this construction scheme) our codes do not match the above “nominal” code rates and block sizes at the same
time. Instead, here we present two sets of codes with rates/code word lengths close to these nominal values. The
first set matches the code rate requirement, and they are represented by the red curves in the plots. These are
designed to match the nominal code rates at the expense of slightly longer or shorter codeword lengths. The other
set matches the codeword length requirement, and they are represented by the black curves in the plots. These used
a mother code exceeding the length requirement and punctured to match the nominal code word lengths while
allowing for slightly higher deviations from the nominal code rate.
At the end, additional simulation results for various punctured sets are included as to show demonstrate the rate-
compatibilities of these codes. These sets are constructed via structured puncturing use an irregular structured
mother code generated from the seed matrices and a puncture-degree sequence.

2004-09-20 IEEE C802.16e-04/264

 12

Minimum Set of Simulations

0 0.5 1 1.5 2 2.5 3 3.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 1152 code, Rate 0.500
Nokia length 1144 code, Rate 0.500
Nokia length 1152 code, Rate 0.519

Figure 1. Performance of n=1152, r = 1/2 code. AWGN channel, BPSK.

1 1.5 2 2.5 3 3.5 4
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 1728 code, Rate 0.667
Nokia length 1708 code, Rate 0.672
Nokia length 1728 code, Rate 0.688

Figure 2. Performance of n=1728, r = 2/3 code. AWGN channel, BPSK.

2004-09-20 IEEE C802.16e-04/264

 13

1.5 2 2.5 3 3.5 4 4.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 2304 code, Rate 0.750
Nokia length 2296 code, Rate 0.750
Nokia length 2304 code, Rate 0.766

Figure 3. Performance of n=2304, r = 3/4 code. AWGN channel, BPSK.

Additional Set of Simulations
r = 1/2, n = 576, 1728, 2304

0 0.5 1 1.5 2 2.5 3 3.5 4
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 576 code, Rate 0.500
Nokia length 572 code, Rate 0.500
Nokia length 576 code, Rate 0.542

Figure 4. Performance of n=576, r = 1/2 code. AWGN channel, BPSK.

2004-09-20 IEEE C802.16e-04/264

 14

0 0.5 1 1.5 2 2.5 3
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 1728 code, Rate 0.500
Nokia length 1716 code, Rate 0.500
Nokia length 1728 code, Rate 0.512

Figure 5. Performance of n=1728, r = 1/2 code. AWGN channel, BPSK.

0 0.5 1 1.5 2 2.5 3
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 2304 code, Rate 0.500
Nokia length 2288 code, Rate 0.500
Nokia length 2304 code, Rate 0.508

Figure 6. Performance of n=2304, r = 1/2 code. AWGN channel, BPSK.

r = 2/3, n = 576, 1152, 2304

2004-09-20 IEEE C802.16e-04/264

 15

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 576 code, Rate 0.667
Nokia length 610 code, Rate 0.672
Nokia length 576 code, Rate 0.712

Figure 7. Performance of n=576, r = 2/3 code. AWGN channel, BPSK.

1 1.5 2 2.5 3 3.5 4 4.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 1152 code, Rate 0.667
Nokia length 1159 code, Rate 0.672
Nokia length 1152 code, Rate 0.676

Figure 8. Performance of n=1152, r = 2/3 code. AWGN channel, BPSK.

2004-09-20 IEEE C802.16e-04/264

 16

1 1.5 2 2.5 3 3.5 4
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 2304 code, Rate 0.667
Nokia length 2318 code, Rate 0.672
Nokia length 2304 code, Rate 0.676

Figure 9. Performance of n=2304, r = 2/3 code. AWGN channel, BPSK.

r = 3/4, n = 576, 1152, 1728

1.5 2 2.5 3 3.5 4 4.5 5 5.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 576 code, Rate 0.750
Nokia length 560 code, Rate 0.750
Nokia length 576 code, Rate 0.802

Figure 10. Performance of n=576, r = 3/4 code. AWGN channel, BPSK.

2004-09-20 IEEE C802.16e-04/264

 17

1.5 2 2.5 3 3.5 4 4.5 5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 1152 code, Rate 0.750
Nokia length 1120 code, Rate 0.750
Nokia length 1152 code, Rate 0.766

Figure 11. Performance of n=1152, r = 3/4 code. AWGN channel, BPSK.

1.5 2 2.5 3 3.5 4 4.5
10-5

10-4

10-3

10-2

10-1

100

B
L
E
R

Eb/No dB

Samsung length 1728 code, Rate 0.750
Nokia length 1736 code, Rate 0.750
Nokia length 1728 code, Rate 0.753

Figure 12. Performance of n=1728, r = 3/4 code. AWGN channel, BPSK.

2004-09-20 IEEE C802.16e-04/264

 18

Rate-Compatible Simulations:

Rate 1/2 Mother Code:

0 1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N2340 M1170 53Nokia45 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.500, N=2340, K=1170
Rate 0.527, N=2221, K=1170
Rate 0.557, N=2101, K=1170
Rate 0.591, N=1981, K=1170
Rate 0.629, N=1861, K=1170
Rate 0.672, N=1742, K=1170
Rate 0.721, N=1622, K=1170
Rate 0.779, N=1502, K=1170
Rate 0.847, N=1382, K=1170
Rate 0.927, N=1262, K=1170

Figure 13: Rate 1/2 mother code using 45SPREAD =N and the following nested seed puncture-degree sequence.

T10] 10, 2, 3, 2, 3, 10,2, 10, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2,

2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 10, 4, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, [5,SEED =d

2004-09-20 IEEE C802.16e-04/264

 19

Rate 2/3 Mother Code Example:

1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N1769 M580 61Nokia29 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.672, N=1769, K=1189
Rate 0.694, N=1714, K=1189
Rate 0.717, N=1658, K=1189
Rate 0.742, N=1602, K=1189
Rate 0.769, N=1546, K=1189
Rate 0.797, N=1491, K=1189
Rate 0.829, N=1435, K=1189
Rate 0.862, N=1379, K=1189
Rate 0.899, N=1323, K=1189
Rate 0.938, N=1267, K=1189

Figure 14: Rate 2/3 mother code using 29SPREAD =N and the following nested seed puncture-degree sequence
T] 10 2, 2, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 10, 10,[1,SEED =d

2004-09-20 IEEE C802.16e-04/264

 20

Rate 2/3 Mother Code Example:

1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N2318 M760 61Nokia38 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.672, N=2318, K=1558
Rate 0.694, N=2245, K=1558
Rate 0.718, N=2171, K=1558
Rate 0.743, N=2097, K=1558
Rate 0.770, N=2023, K=1558
Rate 0.799, N=1950, K=1558
Rate 0.830, N=1876, K=1558
Rate 0.865, N=1802, K=1558
Rate 0.902, N=1728, K=1558
Rate 0.942, N=1654, K=1558

Figure 15: Rate 2/3 mother code using 38SPREAD =N and the following nested seed puncture-degree sequence

T3] 10, 10, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 10, 10, 10,[2,SEED =d

2004-09-20 IEEE C802.16e-04/264

 21

Rate 3/4 Mother Code Example:

1 2 3 4 5 6 7
10-5

10-4

10-3

10-2

10-1

100
sim punc output N2352 M588 56Nokia42 50iters.mat

B
L
E
R

Eb/No dB

Rate 0.750, N=2352, K=1764
Rate 0.768, N=2297, K=1764
Rate 0.787, N=2242, K=1764
Rate 0.807, N=2186, K=1764
Rate 0.828, N=2131, K=1764
Rate 0.850, N=2076, K=1764
Rate 0.873, N=2020, K=1764
Rate 0.898, N=1965, K=1764
Rate 0.924, N=1910, K=1764
Rate 0.951, N=1854, K=1764

Figure 16: Rate 3/4 mother code using 42SPREAD =N and the following nested seed puncture-degree sequence.

T2] 10, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 10, 2, 3, 3, 3, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 10, 10, 10, [3,SEED =d

2004-09-20 IEEE C802.16e-04/264

 22

References:
[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, vol. IT-8, pp.21-28, Jan.

1962.

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of Capacity Approaching Irregular
Low-Density Parity-Check Codes,” IEEE Transactions on Information Theory, vol. 47, pp. 619-637,
Feb. 2001.

[3] Sae-Young Chung, On the Construction of Some Capacity-Approaching Coding Schemes, PhD
Dissertation, MIT, 2000.

[4] P. Joo, et al., “LDPC coding for OFDMA PHY,” IEEE C802.16d-04/86r1, http://ieee802.org/16, May
2004.

[5] T. J. Richardson and R. L. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,” IEEE
Transactions on Information Theory, vol. 47, pp. 638-656, Feb. 2001.

