Project	IEEE 802.16 Broadband Wireless Access Working Group http://ieee802.org/16					
Title	Normal MAP Extension for MIMO H-ARQ					
Date Submitted	2005-01-26					
Source(s)	Wonil Roh, Geunhwi Lim, Jiho Jang, Yong Chang, Seungju Maeng, JeongTae Oh, Chan-Byoung Chae, Kyunbyoung Ko, Jaeho Jeon, Jaeyeol Kim, Soonyoung Yoon	wonil.roh@samsung.com				
		yigal.eliapsur@intel.com				
	Samsung Electronics Co. Ltd.	yuval.lomnitz@intel.com				
	Yigal Eliaspur, Yuval Lomnitz, Zivan Ori					
	Intel Corp.					
	Meng Zhao, Dongyan Bi, Jing Wang, Sean Cai, Jason Hou, Mary Chion, Dazi Feng, Mary Chion, Jun Han,Irving Wang					
	ZTE Corporation					
	Hang Zhang, Mo-Han Fong, Peiying Zhu, Wen Tong					
	Nortel Networks					
	Frederick W. Vook, Xiangyang (Jeff) Zhuang, Kevin L. Baum					
	Morotola Inc.					
	Bin-Chul Ihm, Yongseok Jin, Jinyoung Chun					
	LGE					
Re:	IEEE P802.16e/D5a					
Abstract	The document contains suggestions for extending the N	Iormal MAP for MIMO H-ARQ support.				
Purpose	Adoption of proposed changes into P802.16e /D5a-200	4				
Notice	This document has been prepared to assist IEEE 802.16. It is offere the contributing individual(s) or organization(s). The material in this content after further study. The contributor(s) reserve(s) the right to herein.	d as a basis for discussion and is not binding on is document is subject to change in form and add, amend or withdraw material contained				
Release	The contributor grants a free, irrevocable license to the IEEE to inc and any modifications thereof, in the creation of an IEEE Standards	orporate material contained in this contribution, s publication; to copyright in the IEEE's name				

	any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole
	discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The
	contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.
Detent	The contributor is familiar with the IEEE 802.16 Patent Policy and Procedures (Version 1.0)
Patent	http://ieee802.org/16/ipr/patents/policy.html , including the statement "IEEE standards may include the known
Policy and	use of patent(s), including patent applications, if there is technical justification in the opinion of the standards-
Procedures	developing committee and provided the IEEE receives assurance from the patent holder that it will license
	applicants under reasonable terms and conditions for the purpose of implementing the standard."
	Early disclosure to the Working Group of patent information that might be relevant to the standard is essential to reduce the possibility for delays in the development process and increase the likelihood that the draft publication will be approved for publication. Please notify the Chair < <u>mailto:r.b.marks@ieee.org</u> > as early as possible, in written or electronic form, of any patents (granted or under application) that may cover technology that is under consideration by or has been approved by IEEE 802.16. The Chair will disclose this notification via the IEEE 802.16 web site < <u>http://ieee802.org/16/ipr/patents/notices</u> >.

Normal MAP Extension for MIMO H-ARQ

1. Introduction

This contribution is a companion document to IEEE C802.16e-05/023 [1] and provides H-ARQ functionality for MIMO bursts within the normal MAP structure. Just as is described in [1], the proposed solution is a two level allocation: to first define a 2D region, and then partition this region in a 1D frequency-first manner into bursts. All the bursts in the 2D allocation share the same burst profile and boosting parameters (similar to PDU concatenation in non-HARQ burst). The same H-ARQ DL/UL MAP extensions introduced in [1] are reproduced with the additional MIMO modes and the required text changes are made throughout the document. The proposed texts provide simpler and more efficient MAP support for MIMO bursts than using the existing H-ARQ MAP package in the standard.

2. Description of Multi-layer MIMO H-ARQ

Multi-layer transmission, which allows multiple spatial streams with possibly different rates, is already adopted in the standard [2] [3], and this feature is also enabled for H-ARQ mode in this contribution. Each layer is assigned to specific DIUC/Nep, depending on method of burst profiling. For non H-ARQ mode, there is no difference in signaling between DIUC and Nep approaches. For H-ARQ mode, however, there is a difference. That is, when DIUC is used (i.e., chase combining) with H-ARQ, DIUC of each layer can be independently assigned to match the channel of each stream, whereas Nep with H-ARQ (i.e., incremental redundancy) can not have that feature due to the way current CTC modulation and coding table (Table 329 in [2]) is defined.

The reason for this is as follows: let Nep_{1}^{1} indicate 1st layer Nep for 1st frame, Nsch¹ for Nsch for 1st frame for both layers. Suppose layer 2 has NACK, then at the next frame the layer 2 should use the same Nep_{2}^{1} and Nsch² should be carefully chosen to match the required MCS for the retransmission. But if the layer 1 has ACK from the original transmission, it should be able to transmit the same MCS or the level suggested by CQI feedback for the next transmission, which is generally not possible due to the fixed Nsch².

	Frame 1		Frame 2
Layer 1	$\operatorname{Nep}_{1}^{1}/\operatorname{Nsch}^{1}$	_ACK _	$? / Nsch^2$
Layer 2	$\operatorname{Nep}_{2}^{1}/\operatorname{Nsch}^{1}$	_NACK _	$\operatorname{Nep}_{2}^{1}/\operatorname{Nsch}^{2}$

Therefore, the link adaptation per layer is not possible in general for IR H-ARQ mode, which is the reason why we do not assign separate H-ARQ control information per layer for IR. Instead we use single H-ARQ channel ID for both layers.

3. Specific Text Changes

[Modify section 8.4.5.3.20 as follows]

8.4.5.3.20 H-ARQ DL MAP Extension

Syntax	Size	Note	
H-ARQ DL MAP IE {			
Extended DIUC 2	4	Set to 0x1	
Length	8	Length of the IE in bytes	1
RCID_Type	2 bits	00 = Normal CID 01 = RCID11	

Table 306a H-ARQ DL MAP IE Format

2005-01-26

		10 = RCID7
		11 = RCID3
While (data remains) {		
OFDMA Symbol offset	8 bits	Offset from the start symbol of DL sub-frame
Subchannel offset	6 bits	
Boosting	3 bits	000: normal (not boosted); 001: +6dB; 010: -6dB; 011: +9dB; 100: +3dB; 101: -3dB; 110: -9dB; 111: -12dB;
No. OFDMA Symbols	7 bits	,,,
No Subchannels	6 bits	
N sub hurst	3 bits	Number of sub-bursts in 2D region
Mode	4 bit	Indicates the mode of this IE 0000 = Chase H-ARQ 0001 = Inremental redundancy H-ARQ for CTC 0010 = Inremental redundancy H-ARQ for convolutional code <u>0011 = MIMO Chase H-ARQ</u> <u>0100 = MIMO IR H-ARQ</u> <u>0101 = MIMO IR H-ARQ for Convolutional</u> <u>Code</u> <u>0110 = MIMO STC H-ARQ</u> <u>0111-1111 Reserved</u>
If (Mode==000) {		
DL H-ARO Chase Sub-Burst IE ()	variable	
$\frac{1}{2} \text{ else if (Mode==001)}$	variable	
DL H-ARO IR Sub-Burst IF ()	variable	
$\frac{DE \Pi}{R} = 010 $	variaute	
DI H ARO IR CC Sub Burst IE ()	variable	
DE II-ARQ IR CC Sub-Buist IE ()	variaute	
<u>} else ll (Mode—ol1) }</u>	voriable	
) also if (Mada=100) (variaute	
$\frac{1}{2} \text{ erse II (Mode=-100)}$		
MIMO DL IR H-ARQ Sub-Burst IE ()	variable	
$\frac{\text{else if (Mode==101)}}{\text{Mode==101}}$		
MIMO DL IK H-ARQ for CC Sub-Burst IE	variable	
$\}$ else II (Mode == 110) {		
MIMO DL STC H-AKQ Sub-Burst IE ()	variable	
}		
}		
Padding	Variable	Padding to byte; shall be set to 0
}		

Table 306i MIMO DL Chase H-ARQ Sub-Burst IE Format

MIMO DL Chase H-ARQ Sub-Burst IE {					
<u>For (j=0; j< N sub burst; j++)</u> {					
MU Indicator		<u>1 bit</u>		Indicates whether this DL bur	st is
				intended for multiple SS	
Dedicated MIMO DL Control Indicator		<u>1 bit</u>			
<u>If (MU indicator == 0) {</u>					
<u>RCID IE()</u>		Varia	<u>ble</u>		
1					
If (Dedicated MIMO DL Control Indicator ==1)	{				

Dedicated MIMO DL Control IE ()	variab	le	
<u>}</u>			
Length	<u>10 bit</u>	<u>s</u>	
<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>			
<u>if (MU indicator == 1) {</u>			
<u>RCID IE()</u>	Varia	<u>ole</u>	
1			
DIUC	<u>4 bits</u>		
Repetition Coding Indication	<u>2 bits</u>		<u>0b00 – No repetition coding</u> <u>0b01 – Repetition coding of 2 used</u> <u>0b10 – Repetition coding of 4 used</u> <u>0b11 – Repetition coding of 6 used</u>
ACID	<u>4 bits</u>		
<u>AI_SN</u>	<u>1 bit</u>		
<u>}</u>			
<u>}</u>			
1			

For each multi SS sub-burst (MU Indicator = 1), if the dedicated pilot bit is set to 1 in the STC_ZONE IE (section 8.4.5.3.4) for the zone in which the sub-burst allocations are being made, N_layer for this sub-burst selects the pilot format for the sub-burst by interpreting N_layer as the number of transmit antennas (as defined in 8.4.8), and the SS with the first RCID shall be assigned the pilot pattern corresponding to antenna 1, of section 8.4.8, the second to the pilot pattern corresponding to antenna 2, and so on.

Table 306j MIMO DL IR H-ARQ Sub-Burst IE Format

MIMO DL IR H-ARQ Sub-Burst IE {				
<u>For (j=0; j< N sub burst; j++){</u>				
MU Indicator		<u>1 bit</u>		Indicates whether this DL burst is
				intended for multiple SS
Dedicated MIMO DL Control Indicator		<u>1 bit</u>		
ACK Disable		<u>1 bit</u>		When this bit is "1" no ACK channe
				is allocated and the SS shall not reply
				with an ACK.
$\frac{1}{16} (MU \text{ indicator} = 0) \frac{1}{2}$				
<u>RCID IE()</u>		Varia	ble	
1				
If (Dedicated MIMO DL Control Indicator ==1)	{			
Dedicated MIMO DL Control IE ()		variat	ole	
<u>}</u>				
Nsch		<u>4 bits</u>		
<u>If (ACK Diable ==1) {</u>				
<u>SPID</u>		<u>2 bits</u>		
ACID		<u>4 bits</u>		
<u>AI_SN</u>		<u>1 bit</u>		
<u>}</u>				
<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>				
<u>if (MU indicator == 1) {</u>				

<u>RCID IE()</u>	Varia	<u>ble</u>	
1			
Nep	<u>4 bits</u>		
<u>}</u>			
1			
1			

Table 306k MIMO DL IR H-ARQ for CC Sub-Burst IE Format

MIMO DL IR H-ARQ for CC Sub-Burst IE {				
<u>For (j=0; j< N sub burst; j++)</u> {				
MU Indicator		<u>1 bit</u>		Indicates whether this DL burst is
				intended for multiple SS
Dedicated MIMO DL Control Indicator		<u>1 bit</u>		
$\underline{\text{If (MU indicator == 0)}}$				
<u>RCID IE()</u>		Varia	<u>ble</u>	
1				
If (Dedicated MIMO DL Control Indicator ==1)	{			
Dedicated MIMO DL Control IE ()		variat	ole	
<u>}</u>				
<u>Length</u>		<u>10 bit</u>	<u>s</u>	
<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>				
if (MU indicator == 1) {				
<u>RCID IE()</u>		<u>Varia</u>	ble	
<u>}</u>				
DIUC		<u>4 bits</u>		
Repetition Coding Indication		<u>2 bits</u>		0b00 - No repetition coding0b01 - Repetition coding of 2 used0b10 - Repetition coding of 4 used0b11 - Repetition coding of 6 used
ACID		<u>4 bits</u>		
<u>AI_SN</u>		<u>1 bit</u>		
<u>SPID</u>		<u>2 bits</u>		
1				
}				
1				

Table 3061 MIMO DL STC H-ARQ Sub-Burst IE Format

MIMO DL STC H-ARQ Sub-Burst IE { For (j=0; j< N sub burst; j++){		
<u>Tx count</u>	<u>2 bits</u>	00: first transmission 01: second transmission 10: third transmission 11: fourth transmission
Length	<u>10 bits</u>	
$\underline{if}(Tx \text{ count} == 00) \{$		

MU Indicator		<u>1 bit</u>		Indicates whether this DL burst is
				intended for multiple SS
Dedicated MIMO DL Control Indicator		<u>1 bit</u>		
If (MU indicator == 0)				
<u>_RCID IE()</u>		Varia	<u>ble</u>	
_}				
<u>If (Dedicated MIMO DL Control Indicator ==</u>) {			
Dedicated MIMO DL Control IE ()		variał	<u>le</u>	
<u>}</u>				
<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>				
<u>if (MU indicator == 1) {</u>				
<u>RCID IE()</u>		Varia	<u>ble</u>	
<u>}</u>				
DIUC		<u>4 bits</u>		
Repetition Coding Indication		<u>2 bits</u>		0b00 - No repetition coding0b01 - Repetition coding of 2 used0b10 - Repetition coding of 4 used0b11 - Repetition coding of 6 used
}				
ACID		<u>4 bits</u>		
}				
}				
<u>}</u>				

[End of "Add a new section 8.4.5.3.20 as follows"]

Dedicated DL Control IE for MIMO contains additional control information for each sub-burst in the tables above. Because each sub-burst may have its own control information format dependent on the MSS capability, the length of the Dedicated DL Control IE for MIMO is variable.

[Add a new section 8.4.5.3.20.2 as follows]

8.4.5.3.20.2 Dedicated DL Control IE for MIMO

<u>Syntax</u>	<u>size</u>	Note
Dedicated MIMO DL Control IE() {	_	-
Length	<u>5 bits</u>	Length of following control information in Nibble.
Control Header	<u>3 bits</u>	Bit #0 : MIMO Control Info
		Bit #1 : CQI Control Info Bit #2 : Reserved
<u>N_layer</u>	<u>2 bits</u>	Number of coding/modulation layers
		00 = 1 layer
		$\frac{01 = 2 \text{ layers}}{10 = 2 \text{ l}}$
		10 = 3 layers
		11 = 4 layers
<u>if(MIMO Control Info == 1)</u> {		
Matrix	<u>2 bits</u>	Indicates transmission matrix (See 8.4.8)

Table 3061 Dedicated MIMO DL Control IE Format

<u>}</u>		
<u>If(CQICH Control Info == 1)</u> {		
Period	<u>2 bits</u>	<u>Period (in frame) = 2^period</u>
Frame offset	<u>3 bits</u>	
Duration	<u>4 bits</u>	A CQI feedback is transmitted on the CQI channels indexed
		by the CQICH_ID for 10 x 2 ^d frames.
<u>for (j=0;N_layer+1;j++) {</u>		
Allocation index ¹	<u>6 bits</u>	Index to CQICH assigned to this layer.
1		
<u>CQICH_Num</u>	<u>2 bits</u>	Number of additional CQICHs assigned to this SS (0-3)
<u>for (i=0; i<cqich_num; i++)="" u="" {<=""></cqich_num;></u>		
Feedback type	<u>3 bits</u>	Type of feedback on this CQICH
Allocation index	<u>6 bits</u>	
1		
}		
Padding	Variable	Padding to Nibble; shall be set to 0
1		

Control Header

4 bits are used to indicate the following control information. If the first bit is set to 1, this means that MIMO Control information follows. If the second bit is set to 1, this IE shall contain CQI control information. Other bits are reserved for future extension. **N laver**

Specifies the number of layers contained in this burst. The layer is defined as a separate coding/modulation path.

Matrix Indicator

This field indicates MIMO matrix for the burst.

Period

Informs the SS of the period of CQI reports. A CQI feedback is transmitted on the CQICH every 2^p frames

Frame Offset

Informs the SS when to start transmitting reports. The SS starts reporting at the frame number which has the same 3 LSBs as the specified Frame Offset. If the current frame is specified, the SS shall start reporting in 8 frames.

Duration

Indicates when the SS should stop reporting unless the CQICH allocation is refreshed beforehand. If Duration is set to 0b0000, the BS shall de-allocate the CQICH. If Duration is set to 0b1111, the CQICH is allocated indefinitely and the SS should report until it receives another MAP_IE with Duration set to 0b0000.

Allocation Index¹

Indicates position from the start of the CQICH region.

Feedback Type

Indicates the type of feedback content on the allocated CQICH from SS. Its mapping shall be

000 = Fast DL measurement/Default Feedback

<u>001 = Quantized precoding weight feedback</u>

010-111 = Reserved

[End of "Add a new section 8.4.5.3.20.3 as follows"]

[Modify section 8.4.5.4.23 as follows]

8.4.5.4.23 H-ARQ UL MAP Extension

Table 3061 H-ARQ MIMO UL MAP IE

Syntax	Size	Note	
H-ARQ UL MAP IE() {			

Extended UIUC 2		4		Set to 0x1
Length		8		Indicates the length of the IE in bytes
RCID_Type		2 bits		00 = Normal CID
				01 = RCID11
				10 = RCID7
while (data ramains) (11 = RCID3
Allocation Start Indication		1 hit		0: No allocation start information
Anocation Start Indication		1 011		1: Allocation start information follows
If (Allocation Start Indication == 1) {				
OFDMA Symbol offset		8 bits		This value indicates start Symbol offset of subsequent sub-bursts in this H-ARQ UL MAP II
Subchannel offset		7 bits		This value indicates start Subchannel offset of
				subsequent sub-bursts in this H-ARQ UL MAP II
}				
Mode		3 bit		Indicates the mode of this IE
				000 = Chase H-ARQ
				001 = Intermental redundancy H-ARQ for CIC
				convolutional code
				011 = MIMO Chase H-ARO
				100 = MIMO IR H-ARQ
				101 = MIMO IR H-ARQ for Convolutional
				Code
				$\frac{110 = \text{MIMO STC H-ARQ}}{111 = 10}$
	-	4.1.1		<u>III = Reserved</u>
N sub-Burst		4 bits		I his field indicates the number of bursts in this
For $(i = 0; i < N \text{ Sub-burst}; i++)$				
if (Mode == 000) {				
UL HARO Chase Sub-Burst IE ()				
$\frac{1}{2} = \frac{1}{2} = \frac{1}$				
UI HARO IR CTC Sub Burst IE ()				
) also if (Mode = 010) (
UL HAPO IP CC Sub Puret IE ()				
) also if (Mode= 011) (
<u>MIMO III Chaga HABO Sub Purat IE ()</u>				
$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000000000000000000000000000000000$				
$ \{ else \ if \ (Mode == 100) \} $	-			
<u>MIMO UL IR H-ARQ Sub-Burst IE ()</u>				
<u>} else if (Mode== 101) {</u>				
MIMO UL IR HARQ for CC Sub-Burst IE	0			
} else if (Mode == 110) {				
MIMO UL STC HARQ Sub-Burst IE ()				
}				
}				
}				
Padding		Varial	ole	Padding to byte; shall be set to 0
}		1		
	1	L		

MIMO UL Chase HARQ Sub-Burst IE{				
MU Indicator		<u>1 bit</u>		Indicates whether this UL burst is
				intended for multiple SS
Dedicated MIMO UL Control Indicator		<u>1 bit</u>		
if (MU indicator == 0) {				
<u>RCID IE()</u>		Variab	le	
If (Dedicated MIMO UL Control Indicator ==1)	{			
Dedicated MIMO UL Control IE ()		variab	le	
}_				
1				
Duration		<u>10 bits</u>		
<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>				
<u>if (MU indicator == 1) {</u>				
<u>RCID IE()</u>		Variab	le	
7				
<u>UIUC</u>		<u>4 bits</u>		
Repetition Coding Indication		<u>2 bits</u>		<u>0b00 – No repetition coding</u> <u>0b01 – Repetition coding of 2 used</u> <u>0b10 – Repetition coding of 4 used</u> <u>0b11 – Repetition coding of 6 used</u>
ACID		<u>4 bits</u>		
<u>AI_SN</u>		<u>1 bit</u>		
1				
<u>}</u>				

Table 306t MIMO UL Chase HARQ Sub-Burst IE Format

For each single SS sub-burst (MU indicator = 0) matrix and layer information shall be read from Dedicated MIMO UL Control IE, if set by the indicator bit, and be applied to the burst accordingly. For each multi SS sub-burst (MU Indicator = 1), N_layer for this sub-burst shall be set to 2 and the first SS with the first RCID shall use the pilot pattern A in 8.4.8.1.5 and the first UIUC, whereas the second SS with the second RCID shall use the pilot pattern B and the second UIUC.

Table 306u MIMO UL IR HARQ Sub-Burst IE Format

MIMO UL IR HARQ Sub-Burst IE {				
MU Indicator		<u>1 bit</u>		Indicates whether this UL burst is
				intended for multiple SS
Dedicated MIMO UL Control Indicator		<u>1 bit</u>		
<u>if (MU indicator == 0) {</u>				
<u>RCID IE()</u>		Variat	ole	
If (Dedicated MIMO UL Control Indicator ==1)	{			
Dedicated MIMO UL Control IE ()		variab	<u>le</u>	
<u>}</u>				
~				
<u>Nsch</u>		<u>4 bits</u>		
<u>SPID</u>]	<u>2 bits</u>		
ACID]	<u>4 bits</u>		
<u>AI_SN</u>]	<u>1 bit</u>		

<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>			
if (MU indicator == 1) {			
<u>RCID IE()</u>	Variał	ole	
}			
Nep	<u>4 bits</u>		
<u>}</u>			
1			

Table 306v MIMO UL IR HARQ for CC Sub-Burst IE Format

MIMO UL IR HARQ for CC Sub-Burst IE{				
MU Indicator		<u>1 bit</u>		Indicates whether this UL burst is intended for multiple SS
Dedicated MIMO UL Control Indicator		<u>1 bit</u>		
<u>if (MU indicator == 0) {</u>				
RCID IE()		Varial	<u>ole</u>	
If (Dedicated MIMO UL Control Indicator ==1)	{			
Dedicated MIMO UL Control IE ()		variab	le	
<u>}</u>				
<u>}</u>				
Duration		<u>10 bit</u>	5	
<u>For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>				
<u>if (MU indicator == 1) {</u>				
<u>RCID IE()</u>		Varial	<u>ole</u>	
<u>}</u>				
<u>UIUC</u>		<u>4 bits</u>		
Repetition Coding Indication		<u>2 bits</u>		0b00 - No repetition coding0b01 - Repetition coding of 2 used0b10 - Repetition coding of 4 used0b11 - Repetition coding of 6 used
ACID		<u>4 bits</u>		
<u>AI_SN</u>		<u>1 bit</u>		
SPID		<u>2 bit</u>		
<u>}</u>				
1				

Table 306u MIMO UL STC HARQ Sub-Burst IE Format

MIMO UL STC HARQ Sub-Burst IE{		
<u>Tx count</u>	2 bits00: first transmission 01: second transmission 10: third transmission 11: fourth transmission	
Duration	<u>10 bits</u>	
<u>if (Tx count ==0) {</u>		
<u>if (MU indicator == 0) {</u>		
<u>RCID IE()</u>	<u>Variable</u>	

If (Dedicated MIMO UL Control Indicator ==1) {			
Dedicated MIMO UL Control IE ()		variab	le	
<u>}</u>				
<u>_}</u>				
<u>_For (i=0;i<n_layer;i++) u="" {<=""></n_layer;i++)></u>				
<u>If (MU indicator == 1) {</u>				
<u>_RCID IE()</u>		Variab	le	
<u>_}</u>				
UIUC		<u>4 bits</u>		
<u>Repetition Coding Indication</u>		<u>2 bits</u>		<u>0b00 – No repetition coding</u> <u>0b01 – Repetition coding of 2 used</u> <u>0b10 – Repetition coding of 4 used</u> <u>0b11 – Repetition coding of 6 used</u>
<u>}</u>				
ACID		<u>4 bits</u>		

[End of "Add a new section 8.4.5.4.23 as follows"]

Dedicated UL Control IE for MIMO contains additional control information for each sub bursts.

[Add a new section 8.4.5.4.23.2 as follows]

8.4.5.4.23.2 Dedicated UL Control IE for MIMO

Table 306v Dedicated MIMO UL Control IE Format

<u>Syntax</u>	<u>siz</u>	<u>e</u>	Note
Dedicated MIMO UL Control IE() {	_		-
<u>Matrix</u>	<u>2 b</u>	<u>its</u>	<u>Indicates transmission matrix (See 8.4.8)</u> <u>00 = Matrix A (Transmit Diversity)</u> <u>01 = Matrix B (Spatial Multiplexing)</u> <u>10-11 = Reserved</u>
<u>N_layer</u>	<u>2 b</u>	<u>its</u>	$\frac{\text{Number of coding/modulation layers}}{00 = 1 \text{ layer}}$ $\frac{01 = 2 \text{ layers}}{10-11 = \text{Reserved}}$

[End of "Add a new section 8.4.5.4.23.2 as follows"]

Reference

[1] IEEE C802.16e-05/023 Normal MAP Extension for H-ARQ, submitted for 35th 802.16 Meeting in Jan. 2005

[2] IEEE P802.16-REVd/D5-2004 Draft IEEE Standards for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems

[3] IEEE P802.16e/D5a Air Interface for Fixed and Mobile Broadband Wireless Access Systems – Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands