 IEEE C80216m-09_1355

	Project
	IEEE 802.16 Broadband Wireless Access Working Group <http://ieee802.org/16>

	Title
	16m key hierarchy and key management (AWD-SecurityDG)

	Date Submitted
	2009-07-06

	Source(s)
	Shraga Avishay
Xiangying Yang
Intel Corporation

	E-mail:
avishay.shraga@intel.com
xiangying.yang@intel.com

	Re:
	IEEE 802.16m-09/0028r1. ”AWD call for contribution after session #61”
Category: AWD/Area: Chapter 15.2.4 (AWD-SecurityDG)

	Abstract
	This contribution proposes the texts for AMS privacy section to be included in the 802.16m amendment.

	Purpose
	To be discussed and adopted by TGm for the IEEE 802.16m amendment

	Notice
	This document does not represent the agreed views of the IEEE 802.16 Working Group or any of its subgroups. It represents only the views of the participants listed in the “Source(s)” field above. It is offered as a basis for discussion. It is not binding on the contributor(s), who reserve(s) the right to add, amend or withdraw material contained herein.

	Release
	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.16.

	Patent Policy
	The contributor is familiar with the IEEE-SA Patent Policy and Procedures:

<http://standards.ieee.org/guides/bylaws/sect6-7.html#6> and <http://standards.ieee.org/guides/opman/sect6.html#6.3>.

Further information is located at <http://standards.ieee.org/board/pat/pat-material.html> and <http://standards.ieee.org/board/pat>.

16m key hierarchy and key management (AWD-SecurityDG)
Avishay Shraga, Xiangying Yang
Intel
1. Introduction
This proposal includes an updated 16m key hierarchy, KEY usage, management and maintenance, that unifies the key management during initial network entry, handover network re-entry and re-authentication operations, simplify the key hierarchy and derivation thus ensuring 16m security level will be same or better than 16e.

The new key hierarchy, although similar to 16eRev 2, it introduces some different parameters in each key derivation to make the hierarchy more coherent and reasonable.

We have chosen to propose the changes, although they seemed to be changing more than the minimal required from 16eRev 2 because to our understanding 16m is different enough than 16e and the proposed changes are not problematic to implement yet they are allowing a lot of other 16m requirements in a simple way without the need for complex work around.

The basic concept proposed in this document are:

· Key agreement is done in the PMK level hence ensuring PMK freshness and liveliness with the need to repeat this process only in re-authentication.

· PMK is derived from MSK instead of truncated to allow more keying material to be derived from MSK for NW needs in WMF.

· The CMAC key counter is used in the level of AK so all derived keys (CMAC and TEK) will be fresh after HO, this is cleaner and simpler than putting same counter in all levels, it also saves a permutation level of CMAC using AES and the counter as defined in 16eRev2.

· The peers IDs are used only in the higher level key (AK) instead of in all level because if the root key has binding to the MAC IDs, all derived keys inherit this binding.

· TEK management of old/new as in 16eRev2 is maintained for smooth key update on the data path, this is also supported across re-authentication allowing 2 AKS to be valid in parallel for a certain amount of time (this is also allowed in 16eRev2).
note that the names old/new are not good here because they have the same lifetime as AK, need to think about a new name like DLE/ULE which stands for DL encryption and UL encryption, the decryption is done based on EKS.
· In the TEK derivation function we introduce another counter which is used for TEK update between handovers, the reason for choosing counter and not a nonce is that it is simpler for HO and authentication that both sides resent the counter instead of having to exchange NONCE in a protocol message.
· The key hierarchy also can ensure MS privacy defined by SDD.
2. Text Proposal

======================== Start of Proposed Text =====================
15.2.4.2.1 Key management
15.2.4.2.1.1 Key agreement

The key agreement procedure takes place right after authentication/re-authentication.

It includes exchange of parameters between the AMS and ABS including NONCEs which are used to derive the PMK from the MSK which was created during authentication.

All other keys are derived from PMK right after or in other situation that requires it like HO or re-entry from idle.

The key agreement procedure (as shown in figure 1) include the following steps:
* MS and NW complete EAP authentication (Authenticator got “EAP Success” from AAA and sent it to MS).
* The BS sends PKM_RSP(key agreement msg#1) to the MS, the message includes a plaintext random NONCE_BS.

* The MS calculates a permutation on the MSID: MSID*=DOT16KDF(MSID|BSID|NONCE_BS,48) (same size as MSID) and generates a random NONCE_MS.
* The MS derives all security keys from the PMK ,MSID* and other parameters as defined in XXX and sends PKM_REQ(key agreement msg#2) to the MS that includes the MSID*, NONCE_BS, NONCE_MS and is integrity protected (ICV using the derived CMAC keys) but not encrypted.

* The BS takes the MSID* plain text value and the NONCE_MS, calculates the keys and verifies the ICV it received based on the derived keys, if ICV is verified then the BS knows it has the same keys which are bind to the MSID and BSID, the keys are also fresh due to the 2 NONCE values in the derivation function.
* The BS than sends to the MS PKM_RSP(key agreement msg#3) that includes the NONCE_MS, NONCE_BS, the supported SAIDs (0x1 and 0x2) and is integrity protected (ICV) to proof the possession of the keys and their freshness.

* The MS verifies the ICV and derive the TEKs for the the supported SAIDs.

Once key agreement is completed successfully, the MS sends to the BS REG_REQ that includes the real MSID encrypted as defined in section XXX (Location privacy).

Note that supplying the MSID to the BS allows, among other used of MSID, for the NW elements to calculate MSID* whenever a new AK needs to be derived from PMK (HO for example).

[image: image1.emf]MS BS

CMAC verified

?

Y

Key agreement MSG#1(NONCE_BS)

N

MSID*=DOT16KDF(MSID|

BSID|NONCE_BS,48)

Key Agreement MSG#2(MSID*,NONCE_BS,NONCE_MS)(CMAC)

Create NONCE_MS

Derive PMK, AK, CMAC keys

Derive PMK, AK, CMAC keys

BS Error

handling

Key agreement MSG#3(NONCE_BS,NONCE_MS,SAIDs)(CMAC)

CMAC verified

?

N

MS Error

handling

Y

Continue working using real MSID when needed

EAP Authentication

EAP_TRANSFER(EAP_Success)

Derive TEKs

Derive TEKs

Reg_Req(encrypted(MSID)

Figure 1 Key agreement procedure
15.2.4.2.1.2 Key derivation

For the purpose of key derivation this spec used dot16KDF as defined in XXX

15.2.4.2.1.2.1 PMK Derivation

After successful EAP authentication was completed the MS (supplicant), AAA and authenticator holds a 512bit MSK key (that was transferred to the authenticator from AAA using EAP attributes).

Once EAP authentication completed successfully, the BS starts a key agreement 3-way handshake to derive fresh PMK in both MS and authenticator.

The 3-way handshake is defined in section 15.2.4.2.1.1 key agreement which includes NONCEs exchange that are used as input for PMK derivation.

The PMK derivation is done:

PMK=Dot16KDF(MSK,NONCE_MS|NONCE_BS|”PMK”,160).

Where:

· NONCE_MS – a random number generated by MS and send to the BS during key agreement.

· NONCE_BS – a random number generated by BS and send to MS during key agreement.

The PMK is derived after each successful authentication (nw-entry and re-authentication) and has the same lifetime as MSK.

The MSK may be used as a source for more keying material required by the NW.

15.2.4.2.1.2.2 AK Derivation

AK is derived from PMK and it belongs to a pair of MS and BS.

The AK derivation is done:
AK = Dot16KDF(PMK, MSID*|BSID|CMAC_KEY_COUNT|”AK”, 160)
Where:

· MSID* - a permutation of MSID send by MS to BS during ranging, this is used to bind the key to the MSID

· CMCA_KEY_COUNT – a counter which is used to ensure different AKs for the same BS-MS pairs across handovers, the counter is managed as described in section XXX.
After (re)authentication the counter value is set to “0”

The AK is derived in the following cases:

· NW-Entry

· Re-authentication

· HO re-entry

· Re-entry from idle
The AK lifetime is identical to the PMK lifetime

15.2.4.2.1.2.3 CMAC and MSIDEK Derivation

CMAC keys are derived from AK and used for message authentication in some of the management messages.

There are 2 CMAC keys one used for UL and one for DL.

MSIDEK is MSID encryption key that may be used to encryption the real MSID in the reg_rsp msg in the case that the entire message is not encrypted.

The keys derivation is done:

CMAC_KEY_U| CMAC_KEY_D|MSIDEK = Dot16KDF(AK, “CMAC_KEYS+MSIDEK”, 384).
Each key is 128 bit in size.

All this keys are derived every time a new AK is derived

15.2.4.2.1.2.4 TEK Derivation

TEK is the transport encryption key used to encrypt data
TEK are managed within SA where each SA contains 2 TEKs

The TEK derivation is done:

TEKi = Dot16KDF(AK, SAID |COUNTER_TEK=i|”TEK”, 128),

Where:
· SAID is the security association that the TEK belongs to.
· Counter_TEK is a counter used to derive different TEKs for the same SAID, the value of the counter is changed every time a new TEK need to be derived within the time the SAME AK is valid.
Each SA shall hold 2 TEKs in every given time; these 2 TEKs will be derived from 2 consecutive counter values.
Every time a new AK is derived this counter is reset and the two derived TEKs uses the counter values of ‘1’ and ‘0’ and the same EKS values are assigned to each TEK.
New TEK(s) are derived in the following cases:
· During initial network entry where new AK was derived – in this case both TEKs are derived, counter is reset and the values 0,1 are used for TEK derivation.

· TEK PN space exhausted and there is a need to refresh TEK only (not AK) – in this case the counter will be increased by 1 and a new TEK will be derived.

· During re-authentication where new AK was derived – in this case one TEK is first derived. Another TEK will be derived after the MS will sync on the first one As described in TEK update section

TEK lifetime is identical to AK lifetime.

15.2.4.2.1.3 TEK usage

TEK usage is identical to the definition in IEEE802.16eREV2.

Each SA maintains 2 TEKs marked as DLE (used to be called “old” in IEEE802.16eREV2) and ULE (used to be called “new”).

The TEKDLE key is used for encrypting DL data by the BS and the TEKULE key is used for encrypting UL data by the MS, the decryption is done according to the EKS so basically in transition times were the BS derived a new TEKULE and set the TEKDLE=old TEKULE, then the BS TEKDLE and MS TEKULE are the same TEK with same EKS and both can transfer data securely using the same TEK (until TEK update happens from MS side and MS is re-synced on new TEKULE).
Each TEK has its own PN counter size 22bits.

The PN space is spread between the DL traffic and UL traffic as defined in 16eREV2, where the lower PN (0x00000000-0x2FFFFF) space is used for DL, and upper PN space (0x300000-0x4FFFFF) is used for UL.
15.2.4.2.1.4 TEK update

The TEK update is triggered by either TEKDLE or TEKULE is running out the relevant PN space. In particular BS derives new TEK either when the DL space of TEKDLE or the UL PN space of TEKULE is exhausted.
The MS requests key update when one of the PN spaces of it’s TEKULE is exhausted or the MS detects that it’s TEKULE in being used for downlink traffic as well,
The value of PN exhaustion is different between the BS and MS (the MS number is higher) to ensure BS derives new TEK prior to MS request the key update thus ensuring minima protocol overhead.

The TEK maintenance follows the procedure described in the following example.
· Assume the system starts with BS using TEKDLE=TEK0 for DL traffic and MS using TEKULE=TEK1 for UL traffic.

· The BS monitors its TEKDLE=TEK0 DL PN usage and TEKULE=TEK1 UL PN usage and when one of them is running out, updates it derives TEK2 and set TEKDLE=TEK1 TEKULE=TEK2 while discarding TEK0.(note that after this both DL and UL traffic is done using TEK1).
· The MS shall monitor TEKULE=TEK1in its downlink traffic. Once the downlink traffic is received with this key, the MS knows that BS derived new TEK and should update its TEKULE For uplink traffic with the key update procedure (see Figure 2). After the successful update TEKDLE=TEK1 and TEKULE=TEK2.
· The MS shall also monitor TEKULE both DL and UL PN usages. In the event that one of the PN spaces runs out (in the case more UL than DL it may happen that BS derived new TEK but MS could not identify it due to lack of DL traffic) The MS shall trigger the key update procedure to update TEKULE
The key update procedure is shown in Figure 2. The MS shall send in the request message with the associated SAID. The BS shall indicate the EKS, AKID and COUNTER-TEK in the reply message. If the COUNTER-TEK/EKS are updated, the MS updates its TEK accordingly. If the COUNTER-TEK/EKS are not updated, it means the BS did not derived new TEK yet and the MS shall retry the procedure after TBD (time or PN space offset)

[image: image2.emf]PKM-REQ(“TEK-REQ”, SAID)(ICV)

PKM-RSP(“TEK-RSP”, EKS, AKID, COUNTER_TEK)(ICV)

TEK update

MS BS

New

EKS?

Y

N

Figure 2 MS TEKULE update procedure
15.2.4.2.1.4.1 TEK update after Re-authentication

The re-authentication is done via key-agreement three-way handshaking similar to that defined in Figure 1. Note that for re-authentication, i) after the key agreement, the AKold is still valid and ii) only one new TEK is derived right after key agreement. The detail procedure is as follows
- Key agreement finishes with generation of AKnew, but AKold is still valid.

- BS updates its TEKDLE with TEKULE and derives new TEKULE from AKNEW
- the MS monitors its DL traffic and realize BS now uses its TEKULE in the DL. The MS initiates TEK update procedure in order to obtain new TEKULE.
- The BS responds with AKID of AKnew and MS can know it needs to derive its TEKULE from AKnew
- After TEK update procedure with the MS was completed and the BS knows the MS poses TEKULE derived from the new AK, it should derive another TEK to discard all keys dependent on AKold, and than it can discard AKold as well.
15.2.4.4 MS privacy

As mentioned earlier, MSID* is used during key agreement to protect MS privacy. Instead of sending real MSID in RNG-REQ as 802.16eREV2 does, the real MSID (along with ST-ID assignment) will be sent in the encrypted message during registration. The protocol overview is shown in Figure 3.
The MSID* is derived by the function

MSID*=DOT16KDF(MSID|BSID|NONCE_BS,48).
The reasoning behind the user parameters in the MSID* derivation is as follows:

- MSID is the parameter needs permutation for privacy protection.
- BSID is used to ensure different permutation per BS.

- NONCE_BS is used to ensure we get different permutation every time the MS connects to the same BS so the permutation will not be tractable; the reason for using an BS_NONCE and not MS_NONCE is to ensure the MSID* was freshly derived and to allow the BS ensure the location privacy of the MS (an MS may generate same NONCE every time which may end up with trackability while BS generation is easily enforced by regulation).

[image: image3]
Figure 3 MS privacy protection during network entry
============================== End of Proposed Text ===============
4. References

[1] IEEE P802.16 Rev2 / D9, “Draft IEEE Standard for Local and Metropolitan Area Networks: Air Interface for Broadband Wireless Access,”
[2] IEEE 802.16m-07/002r8, “802.16m System Requirements Document (SRD)”
[3] IEEE 802.16m-08/003r9, “The Draft IEEE 802.16m System Description Document”
[4] IEEE 802.16m-08/043, “Style guide for writing the IEEE 802.16m amendment”
[5] IEEE 802.16m-09/0010R2, “IEEE 802.16m Amendment Working Document”
Ranging

RNG-REQ/RSP (T-STID assigned)

Capability negotiation

SBC-REQ/RSP

Registration

REG-REQ/RSP (MSID encrypted, ST-ID assigned)

Authentication followed by Key agreement

(MSID* established)

_1307423097.vsd
Continue working using real MSID when needed

MS

BS

Create NONCE_MS
Derive PMK, AK, CMAC keys

CMAC verified ?

BS Error handling

Y

Key agreement MSG#3(NONCE_BS,NONCE_MS,SAIDs)(CMAC)

N

Key agreement MSG#1(NONCE_BS)

N

MSID*=DOT16KDF(MSID|
BSID|NONCE_BS,48)

CMAC verified ?

Key Agreement MSG#2(MSID*,NONCE_BS,NONCE_MS)(CMAC)

MS Error handling

Derive TEKs

Derive TEKs

Derive PMK, AK, CMAC keys

Y

Reg_Req(encrypted(MSID)

EAP Authentication

EAP_TRANSFER(EAP_Success)

_1307448758.vsd
PKM-REQ(“TEK-REQ”, SAID)(ICV)

PKM-RSP(“TEK-RSP”, EKS, AKID, COUNTER_TEK)(ICV)

TEK update

MS

BS

New
EKS?

Y

N

