

O Prepared for 802.17, November 2001

CY RE S

 Dr. David V. James Chief Architect Network Processing Solutions Data Communications Division 110 Nortech Parkway San Jose, CA 95134-2307 Tel: +1.408.942.2010 Fax: +1.408.942.2099 Base: dvj@alum.mit.edu Work: djz@cypress.com

Control Field Functionality

RPR Frame Format

- 1) **3**-bitalign **e**l
- 2) 32-bit checksum
- 3) Global MAC addresses (not local)

RPR Leader Format

RPR Leader Format

Ethernet Bridging

Control Frame Formats

January 21, 2002, page 11

Discovery Frame Format

Survey Frame Format

Format Issues

- **O** Wrap: static versus dynamic
- **O** Structural differences:
 - Alignment: 32-bit versus *16-bit
 - CRC coverage: 32-bit versus *16-bit
- **O** Ethernet-type: payload vs *header
- **O** Priority and class: distinct vs *merged
- O Local addressing:
 - SSID= TTL, destination= DSID
 - *DSID= TTL, SSID= ????
- **O** Class-A flow-control: embedded vs distinct

Discovery Sequencing

January 21, 2002, page 15

Supported topologies

Topology collection

• Append your macAddress & info (no duplicate copies present...)

- Strip up-to existing macAddress (inclusive)
- Postpend your macAddress & information

Flow control

January 21, 2002, page 19

Opposing arbitration

- Data packets flow in one direction
- Arbitration control flows in the other*

Internal MAC arbitration signals

- Arbitration affects opposing run
- My congestion affects upstream node
- Downstream congestion affects me

External MAC arbitration signals

MAC receives information
 MAC FIFOs are \$\$, latency++, inflexible
 Application receives information
 Allows reordering and run selection

Arbitration related components

- Distinct class-A & class-B/C paths
- Load dependent policing

Class-A flow control (proactive and reactive)

January 21, 2002, page 25

O Proactive

Minimal (nonexistent?) passBC transit buffer Less available bandwidth Each station maintains constant classAp traffic

O Reactive

Significant passBC transit buffer

Full bandwidth utilization

Each station responds/regenerates throttle messages

O Interoperable?This is a bandwidth vs memory \$\$ tradeoff

Proactive class-A partitions

- Data packets go source-to-destination
- Residue returns destination-to-source to provide subsistence for transmissions

Proactive class-A compatibility options

- Reactive node trickles class-A bandwidth
- Reactive node recycles class-A bandwidth class-A => class-A', thus preserving BW

Reactive class-A control

- Transmission of packets causes
- Backup of passBC FIFO that
- Returns flow-control information that
- Provides consumable idle packets

- Flow control passes upstream
- Proactive stations pass these indications

Topology discovery

January 21, 2002, page 31

Frame interchanges

- **O** Triggered on state change
- **O** Triggered on state change
- **O** Also sent periodically

- Automatic fault recovery
- Piggyback on heartbeat
- **O** Also distributes stationID addresses
 - Previous: derived from topology and EUI-48 info
 - Bit map supportive "reclaiming" precedence
- O Robust!
 - Context-less behavior (update rate only)
 - No addressing or timeouts required

CRC processing

January 21, 2002, page 33

CRC processing

- **O** Store&forward/Cut-through agnostic
- **O** Invalid data is effectively discarded
 - store-and-forward discards
 - cut-through stomps the CRC
- **O** Maximize error-logging accuracy
 - Separate header&data CRCs
 - "most" corruptions hit the data

Cut-through CRCs

- Corrupted packet remains corrupted
- Error logged when first detected
- if (crcA!=crc) {
 errorCount+= (crcA!=crc^STOMP);
 crcB= crc^STOMP;

Distinct CRCs reduces discards

End-to-end CRC protected TTL

Pre-emption (a physical layer decision)

January 21, 2002, page 39

Pre-emption

- **O** Suspend class-B/C for class-A packet
- **O** Only one level is sufficient
 - class-A is the latency critical traffic
 - more levels complicate hardware
- **O** Physical layer dependent
 - marginal for high BW & small packets
 - distinctive "suspend" symbol required

- Packets can be suspended
- The class-A packet can be stripped
 - egress queues are store&forward
 - distinctive idle markers needed

- Pre-emption mandates egress S&F
- Simplistic node has no such S&F
- Interoperability burden on elegant
 - boundary node has S&F bypass
 - cut-through in preemptive domain

Limits of scalability

- Geosynchronous
 - Terrestrial
 - The metro area
 - To the curb
 - To the home

• Flow control mandates 2-out-of-3

- Low latency transmissions
- Fair bandwidth allocation
- High bandwidth utilization
- Feedback control systems
 - Low latency signaling
 - Control can pass class-B/C packets
 - Separate class-A queue is utilized
- **O** Other observations

- Local control => global perversions
- Fairness is inherently "approximate"
- Strange beating sequences DO OCCUR

Allowed transmissions

	warnings		transmissions		
	LO	н	none	LO	н
≥3/4	send	send	A,F	A,F	A,F
≥ 1/2	send	pass	A,F	A,F	Α
≥1/4	pass		A,B,C _b ,F	A,B	
≥0			A,B,C _b ,C _c ,F		

O Dual levels

- Class-A, pre-emptive low latency
- Class-B, less latency sensitive
- **O** Jumbo frames
 - Affect asynchronous latencies
 - NO IMPACT on synchronous latency
- **O** Cut-through vs store-and-forward
 - Either should be allowed
 - Light-load latency DOES matter

MAC interface links

January 21, 2002, page 47

LiteLink features

O Byte-wide 10Gb/s link (Gb/pin/s)

- 11 pins total for clock, control, and data
- SLVS-400 transmitter, matched impedance
 - Technology independent 0.8V driver supply
 - .2V and .6V low and high signal levels
- Differential receiver, matched impedance
 - Near DC encoding (5/11 or 6/11 ones)
 - Termination derived reference voltage
- Source synchronous, DDR clock

Byte-wide coding properties

Common features

Common features

- Separate header and payload CRCs
- +Virtual output queues for efficient spatial reuse
- +Proactive&reactive class-A traffic options
- +Weighted fairness
- +Three fairness classes but distinct naming high/medium/low vs A/B/C
- +Node count: >=63, with a desire for 256 (TTL w/wrap is much simpler if <=127)
- +Wrap and steering supported

- +Duplex queues: Gandolf & DVJ
- +Cumulative discovery: Gandolf & DVJ
- +Steering/wrapping specified on per-packet basis
- **#DVJ: Client-to-MAC physical interface**
- #DVJ: Clock differences (elasticity buffer mgmnt)
- #DVJ: Time-of-day (stratum check)
- #DVJ: Brandwidth reservation management (for consistent provisioning)
- #DVJ: CRC-32 formats (MAC assumes only one?)

Contending mechanisms

- More than duplex (x2) ringlets
 DVJ&Gandolf: x2 duplex ONLY
 Alladin: xN if not found to be "overly" complex
 -Flow control (B and C)
- **○** -Frame format fields
 - Presence or absence of stationID fields
 - "Questionable" value fields
 - header vs payload, for type & CID
- **O** Discovery

DVJ&Gandolf: Cumulative discovery Alladin: Multistep