

Merits of Open Loop

Siamack Ayandeh

sayandeh@onexco.com

Onex Communications Corp

a subsidiary of TranSwitch Corp.

09/03/01

IEEE 802.17 RPRWG 802-17-01-00090

Siamack Ayandeh

- Allows for dynamic partitioning between the High and Low priority traffic
- No HOL blocking issues
- Relatively low configuration and operational complexity
- Likely to have comparable performance to CA
- Not prone to getting out of tune, or link aggregation issues

3 Flavors of CoS

HP MAC e2e delay is reduced by CoS capable transit & txm queues Question is by how much?

Static Partitioning of High & Low Priority Traffic

Example of Static Partitioning i.e. no stat-muxing

Dynamic Partitioning

Dynamic Partitioning allows stat-muxing

It is inconceivable to have:

- Close to 100% ring utilization
- Consistent *bounded delay* for HP
- & small Transit Buffers with no loss on the ring

Open loop caters to dynamic partitioning, CA may not

What's meant by bounded delay

- There is an upper limit on MAC e2e delay of High Priority packets
- This upper bound can be controlled by resources provisioned for HP class only
- Min and Max-plus algebra e.g. can be applied to derive analytic bounds
- Results of this analysis can be used by service providers to control HP class performance

3 examples of congestion avoidance

<u>References</u>

- SRP-fa, Spatial Re-use Protocol
 - rfc2892
 - Conexant SRP MAC overview
 - SRP-fa performance evaluation 3/14/01
- iPT-CAP, Inter WAN Packet Transfer
 - iPT
 - iPT-CAP 07/11/00
 - iPT fairness CAP simulation report
- VOQ-aware MAC
 - Proposed VOQ-aware MAC 05/01
 - Simulation Results 03/12/01

SRP-fa

Table of SRP Scheduling Order

8		
! congested && (my_usage < allow_usage)	congested {(lo_tb_depth>0) && (my_usage > fwd_rate)}	(lo_tb_depth> TB_HI_THRESH)
HP transit HP host	HP transit HP host	HP transit
LP host LP transit	LP transit	LP transit

?

SRP-fa Engineering Parameters

2 options

- (LP_HI_thresh LP_Low_thresh/2) >= bytes in transit (i.e. large enough TB allows dynamic partitioning)
- (LP_HI_thresh LP_Low_thresh/2) < bytes in transit (i.e. Host HP MAC access delay for HP class is *un-bounded*)
- Un-bounded means that HP class delay depends on traffic from other classes

iPT-CAP

- C' = $C \alpha 1$ leads to static partitioning
- Seems to be the only way to bound high priority delay

VOQ-aware MAC

• MAC is classless,

•
$$f_i = r_i + w_i \frac{\left(C - \sum_{active} r_i\right)}{\sum_{active} w_i}$$

- Where f_i is the BW share of station-i on a segment & is sum of it's committed access rate (r_i) + its share of excess ring bandwidth
- It seems to be a case of un-bounded delay

Conclusion 1

- High priority ring access delay may not be bounded when using congestion avoidance
 Low priority transit gets through first
- Avoidance algorithms/weighted fairness if applied to low priority traffic only
 - Lead to static partitioning of ring bandwidth between high and low priority traffic

- With open loop only connections which cross the congested link are throttled
- Congestion avoidance on the other hand exhibits HOL blocking in one or two flavors
 - Un-intended throttling of stations
 - Un-intended throttling of add/host traffic (Adisak's quiz 05/01)

• SRP has mechanism to allow for spatial re-use i.e. if at S2 (allow_usage>fwd_rate); f1 is not throttled

- f1 however is throttled to bottleneck rate (1/3 vs. ¹/₂) as (fwd_rate>allow_usage) at station-2
- Solutions based on global state require per segment monitoring and state, and dissemination of all this info to VOQ clients which may not know the ring segment topology after all

- f1 host is rate shape limited based on
 bottleneck rate which is due to f1b + f2 + f3 + f4 + ...
- f1a is therefore denied full access to the ring while resources are available on S1-S2 span

Lower Configuration & Operational Complexity

- Weighted fairness by definition requires global knowledge of two parameters per station
 - committed bandwidth per station (r_i)
 - weight of station (w_i)
- Global knowledge requires identical copies of two tables at every station $\{r_0...r_n\}$ & $\{w_i...w_n\}$
- A change in r or w has to be communicated to all stations

dropped packets

Performance not likely to be a differentiator

- Suitable metric for comparing open loop & CA is client good-put
- TCP drops 6-8% of it's traffic irrespective
 - Open loop drops at the congested link S1
 - CA drops at the RPR MAC client layer S2
- Rings are overbooked by factor of 4, 20, or more
 - Therefore there may be little or no excess bandwidth to allocate by fairness schemes any way
 - Provisioned traffic at each station is what gets through
 - Excess bandwidth is dynamic, so getting less of it is equivalent to quiet stations reclaiming their share

IEEE 802.17 RPRWG 802-17-01-00090

Siamack Ayandeh

- Consider the congested egress scenario, where TCP is the only mechanism at work
- Depending on the number of TCP flows constituting f1 & f2 bundles, the egress rate of each flow would vary

- And is not controlled by any MAC fairness schemes

• Simulation studies should include TCP clients & compare avoidance schemes being on or off

- Open loop offers "fairness" as controlled by TCP in the face of congestion
- If it's good enough for the rest of the network, it's good enough for RPR
- No need for global knowledge of weights or rates
- Provisioning is weighted, while allocation of excess bandwidth is on a best effort basis
 - suffers from station location advantage, hence is fair with dynamic traffic patterns i.e. premise behind spatial re-use
 - is impacted by the number of contending TCP connections
 - IMHO weighted best effort offered by CA is contradiction in terms

Merits of Open Loop

Open loop

- Offers dynamic bw partitioning & CoS capable MAC
- No HOL blocking
- Low configuration complexity
- Best effort access to excess bandwidth
- Works with link aggregation

Congestion Avoidance

- Choice is between static partitioning, classless MAC, and small transit buffer
- 2 flavors of HOL blocking creates congestion
- Needs global state and topology aware client
- Weighted access to excess bandwidth. Is not activated when there is no excess bandwidth e.g. with overbooked rings, or when congestion is at egress
- May need design modification to deal with link aggregation