

MAN/WAN Interconnection Options for SBC

Vish Ramamurti George Young

MAN/WAN interconnection

DS1 could be TDM, FR or ATM. Fractional DS1 possible for TDM and FR FR and ATM may pass through an ATM/FR switch in the core

802-17-01-00087 vr_sbcman_01.pdf Sept 10-13, 2001

SBC Technology Resources, Inc.

MAN/WAN interconnection (Contd.)

MAN/WAN interconnection (Contd.)

OCn could be POS or ATM.

ADSL Architecture

Current Network Architecture

Typical SBC Transport Network in a Metro

SBC Native LAN Service

SBC's GigaMAN: Gigabit Ethernet

MON Application

- Multi-service Optical Network -- Customer Dedicated DWDM network
- Targeted for large business customers
 - Storage area networks
 - Large amount of GbE traffic
 - Rapidly growing SONET needs

Sept 10-13, 2001

Future Shared DWDM Infrastructure

ATM Passive Optical Network (APON)

ATM VP Ring

- •ATM is the common transport layer over a "thin" layer of SONET.
- •Integration of transport and switch functions at ATM layer
- •Support for all types of services (private lines, FR, ATM, voice, IP, etc.)
- •Statistical multiplexing for data traffic (without SONET hierarchy)
- •ATM VP Protection Switching with 50~100 msec error restoration time
- •Protects against ATM layer as well as lower layer defects
- •Protection bandwidth could be utilized by best-effort data traffic

A lot of the benefits are similar to what RPR hopes to provide

ADSL Transport with ATM VP Ring

•ATM VP Rings enable the aggregation and multiplexing of lightly loaded DS3 and OC3c circuits.

•This reduces the number of DS3/OC3c circuits & ports on IOF network and ATM switches.

•This also reduces back-hauling, resulting in reduced IOF network and ATM port costs.

Important reasons why ATM VP Ring business case did not prove in

- Lack of enough ATM sources in the access network
- Adaptation of non-ATM traffic to ATM was expensive
- ATM VP rings were not so attractive in the core as the bandwidth utilization in the ATM "pipes" in the core was high.

Important Lesson: Do not make RPR too complicated that makes adaptation of traffic to RPR too expensive.

