

Connecting the Last Mile

IEEE 802.19 TVWS Workshop – San Diego

July 16, 2010 v1.2 Jim Qualie

Agenda

- 1. Introduction
- 2. Challenges
 - a) Spectrum
 - b) Equipment
 - c) Market
 - d) R&D
- 3. Field Trial Results
- 4. Q&A

Introduction:

Company Mission & Driver

Mission

To be the world leader in rural connectivity systems

Driver

Insatiable demand for bandwidth driven by content consumption

Introduction:

PCC History

Introduction: PCC Key Markets

Industrial/Commercial

- End-to-end QoS, remote monitoring, SCADA
- Medium to low bandwidth, high reliability

Distance Learning/EMS/Medical/Enforcement

- Remote learning, video conferencing, worldwide education content
- High bandwidth nomadic connectivity (remote health monitors)
- Central monitoring of field (vehicle camera's, thermal imaging, etc.)

Mega Projects

Comprehensive site communications solutions

Residential

- Gold, Silver, Bronze service model
- Best effort but at high reliability

- a) Spectrum Challenges
- b) Market Challenges
- c) Equipment Challenges
- d) R&D Challenges

Challenges: Spectrum

- Collaboration with IC for spectrum
- Lite-licensing, not unlicensed; case study is WIFI
- RRBS Standards development with IC through RABC meetings
 - Non-member participation, open, collaborative, working closely with CRC
 - Secondary service Marginal RRBS receiver beside 850kW TV broadcast
 - Protection of DTV receivers RRBS transmitter beside marginal DTV receiver
 - Emissions mask protecting N+1, through N+16, dBc vs dBm
 - Promote coexistence, efficient use of spectrum, business viability

Propagation

- 121 km dead zone at border with US
- 75% of Canada's population live within 160 km of US border
- work with FCC to set aside channels?
- Polarization
 - Polarization diversity horizontal polarization swamps DTV
 - Spatial diversity 5, 6 wavelengths required
- Channel "bonding"/aggregation 2*6MHz → 12 MHz
- Antenna technologies: Omni-directional coverage
 - Sectorization of very large cells

Market

- Cost of tower and land agreement dominates sustainability model
- Coverage or capacity?
- What will rural customers pay?
 - Urban market has driven residential service pricing too low
 - Get customer to pay for equipment to offset poor ROI timeline
 - Need anchor tenants:
 - Industrial, oil, gas, forestry, municipalities, medical, police, fire, ambulance
 - Symmetric DL/UL for multi-site triple play
- Consider cost of upstream
 - Learn from Clearwire, AT&T/iPhone, can't serve 4G off T1 lines
 - Trend toward higher throughput → smaller cells, or less users per cell
- Consider cost of "truck roll"
 - Large cells mean fewer towers, but subscribers are also further apart, harder to service
 - A single service call could eat 12 months of profits
 - Some sites are only accessible via a 5 hour helicopter ride
 - Consider the cost of replacing a \$20 power supply

Challenges: Equipment

- Approached multiple vendors
 - WIFI collision model, LAN vs WAN vs MAN
 - Dies when water freezes
 - Dies in Spring or Fall due to freeze thaw cycles
 - Dies at -40°C typical Canadian prairie winter
 - Dies with large number of users, large cells
 - Dies in NLOS
 - Layer-2 bridging
 - No local manufacturing
- Approached OEMs and manufacturers
 - low volume, high cost
 - robust and reliable for Canadian climates
 - Partnership on supply chain
 - manufacturing or assembly
 - PCC value proposition
 - Long term partnership

R&D (i)

- Design and manufacture our own
 - Reliability
 - Throughput
 - NLOS
- 512-698 MHz breaking new ground
 - Baseband silicon vendors won't support a small company, no potential for high volumes
 - PA no COTS PA/LNA modules available
 - Transceiver no RFIC available
 - Antenna limited COTS, no design expertise, expensive to pioneer in low volume
 - Panel instead of dipole/yagi
 - Dipole on tower uses too much real estate. 8-element dipole = 19 ft
 - Omni-directional coverage with multiple antennae
- Proprietary versus WiMAX/802.16e
 - No standard for UHF
 - Simple Ethernet bridging for TLS
 - Urban WiMAX meant for islands of capacity, not coverage
 - ASN Gateway cost, and network infrastructure requirement
 - Why not 802.16d?

R&D (ii)

- RRBS emissions mask
 - One HW SKU vs channel filter
 - Class A vs Class AB
 - RRBS vs WiMAX
- Dual Polarization → MIMO
 - Required for adequate throughput at cell edge, or extends cell radius
 - No dual polarized antennae in this band
- Power & Efficiency
 - Outdoor SU may be solar powered in remote location
 - PA dominated power budget
 - Reliable, efficient PA design → Class AB, harder to meet mask
 - Class A is power inefficient, and runs hot → less reliable, easier to meet mask
 - Reliable PS: most PCC service calls are because a power supply has failed
- Cellular planning
 - no frequency reuse, omni-directional coverage
- No reliable broadband propagation models
 - Adjust cell planning software model parameters from empirical data

R&D (iii)

Field Trial Results:

March 2009

Field Trial Results:

April 2010

Q&A

Questions?

