Project	IEEE 802.20 Mobile Broadband Wireless Access		
	< <u>http://grouper.ieee.org/groups/802/mbwa</u> >		
Title	Soft Iterative Decoding for Mobile Wireless Communications		
Date Submitted	2003-01-08		
Source(s)	John L. Fan Flarion Technologies	Email: jfan@flarion.com	
	135 Route 202/206 South	Voice: 908-997-2000	
	Bedminster, NJ 07921	Fax: 908-997-7090	
Re:	Mobility Enabling Technologies and Capabilities		
Abstract	This submission discusses the soft iterative decoding of certain types of error-control codes, and their applications to mobile wireless		
Purpose	For informational use only.		
Notice	This document has been prepared to assist IEEE 802.20 MBWA. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.		
Release	The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE's name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE's sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20 MBWA.		
Patent Policy	The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual < <u>http://standards.ieee.org/guides/opman/sect6.html#6.3</u> > and in <i>Understanding Patent Issues During IEEE Standards Development</i> < <u>http://standards.ieee.org/board/pat/guide.html</u> >.		

Soft Iterative Decoding for Mobile Wireless Communications

John L. Fan jfan@flarion.com

802.20 MBWA WG January 13-16, 2003

Contents

- Error-Control Codes
- Understanding Soft Iterative Decoding
- Application to Mobile Wireless

Error-Control Codes (ECC)

- ECCs introduce redundancy into a data sequence
- Allows for correction of errors resulting from the noisy, imperfect channel
- In past decade, new paradigm: ECCs with structure that allows soft iterative decoding
- **Soft** = probabilistic messages
- Iterative = repeated passing of messages
- Significant coding gain

Examples of ECCs

"Traditional ECCs"

"ECCs that allow soft iterative decoding"

- Repetition
- Single-parity check
- Hamming codes
- Convolutional codes
- BCH codes
- Reed-Solomon codes

- Turbo decoding of concatenated convolutional codes
- Turbo decoding of product codes
- Low-density paritycheck (LDPC) codes

Comparison

Traditional ECCs

Soft iterative ECCs

- Algebraic decoding methods
- Less complexity
- Less coding gain
- Good for short codewords

- Probabilistic decoding methods
- High complexity
- High coding gain
- Good for long codewords

Coin Puzzle: Equality

Suppose the probability that the first coin is a head is $p_1=2/3$ and the probability that the first coin is a head is $p_2=2/3$. If all three coins are all heads or all tails, what is the probability p_3 that the third coin is a head?

$$x_1 = x_2 = x_3$$

Equality node

Coin 1	Coin 2	Coin 3	Probability
Head	Head	Head	$p_1 p_2$
Head	Head	Tail	
Head	Tail	Head	
Head	Tail	Tail	
Tail	Head	Head	
Tail	Head	Tail	
Tail	Tail	Head	
Tail	Tail	Tail	$(1-p_1)(1-p_2)$

Coin Puzzle: Parity-check

Suppose the probability that the first coin is a head is $p_1=2/3$ and the probability that the first coin is a head is $p_2=2/3$. If exactly two of the coins are heads, or all are tails, what is the probability p_3 that the third coin is a head?

$$x_1 \oplus x_2 \oplus x_3 = 0$$

Parity-check node

Coin 1	Coin 2	Coin 3	Probability
Head	Head	Head	
Head	Head	Tail	$p_1 p_2$
Head	Tail	Head	$p_1(1-p_2)$
Head	Tail	Tail	
Tail	Head	Head	$(1-p_1)p_2$
Tail	Head	Tail	
Tail	Tail	Head	
Tail	Tail	Tail	$(1-p_1)(1-p_2)$

Answer:

$$p_3 = p_1(1-p_2) + (1-p_1)p_2$$

$$1 - 2p_3 = (1 - 2p_1)(1 - 2p_2)$$

Parity-check matrix as a graph

The Case of the Mysterious Light Bulbs

- Someone has broken into the Lightbulb Factory at night and turned on some of the light bulbs. Your job is to flip the light switches so as to turn off all the lights in order to conserve energy.
- The problem is that each light switch affects many light bulbs, and each light bulb is connected to many light switches. Light bulbs go between two states ("on" and "off") whenever a connected switch is flipped.
- Your mission is to turn off all the lights while flipping the fewest number of switches possible.

An analogy for LDPC codes

Flipping the minimum set of switches to turn off all the lights.

Correcting bit errors in the received word so that all the parity checks are satisfied

More analogies

Error-Control Code	Analogy
"Turbo" Product Codes (TPC)	Crossword puzzle $\begin{array}{c c} A & T & E \\ \hline G & E & L \\ \hline O & A & K \end{array}$
Turbo Convolutional Codes (TCC)	Anagram TURBO CODE

Comparison of various ECCs

Mobile Wireless Considerations

- A packet-based mobile wireless system needs:
 - Short blocks for frequent control messages
 - Long blocks for data traffic
 - A variety of code rates for link adaptation
- Retransmission / ARQ
 - Maximize coding gain at $\sim 10^{-3}$ packet error rate
 - Error floor not a serious problem
- Multipath fading channels
 - With OFDM, multipath becomes frequency selectivity
 - ECC sees variations in channel gain across codeword

Comparison of block lengths

Comparison of block lengths

Robustness on different channels

Summary

- Turbo and LDPC codes can provide practical methods for achieving high coding gain in communication systems
- Key elements are soft decoding and iterative message-passing.
- These codes meet the needs of wireless communications, e.g., in terms of block lengths, code rates, and robustness in multipath channels.