Options for EEE in 100G

Draft

Hugh Barrass IEEE P802.3bj January, 2012

Contributors, reviewers and supporters

Add names here...

- Background
- PHY power breakdown
- EEE options
- Simulated performance
- Conclusions?
- Questions...

Energy Efficient Ethernet

- 802.3az Defined EEE for 100M-10G
- Wake times ~ max length packet
- Includes definition for longer wake time negotiation
- All PHY definitions include quiescent state
- Signals stop/start parameters kept refreshed
- Measured PHY power savings up to 80%

... but how effective is it?

- How widely will it be used & how much energy will it save?
 The answer is "it depends"
- Two critical parameters wake time; % power in LPI state
- Time spent in LPI depends on wake time & traffic profile
- Wake time defines latency hit (& whether it gets disabled)
- These considerations will become more important for 100G

Issues for 100G EEE

- V. short max packet time (~150ns)
- Problems to reduce wake time:
 - Time to remove/reapply power constant (no scaling)
 - Unclear how quickly 25GHz PLL can capture
 - Lane alignment must be re-established
- Ultra-high speed designs require "aggressive" silicon libraries (high leakage)
 - Clock stop alone doesn't save as much power

• Perhaps there will not be a single answer...

Agenda

· **I** | **I**

- Background
- PHY power breakdown
- EEE options
- Simulated performance
- Conclusions?
- Questions...

PHY Components/Functions

Relative power for components

PHY Function	Power
Transceiver	5
PLL, precode, DFE	20
Other PMA	10
FEC	40
Lane alignment, block code	15
Scrambler	10

Normalized to PHY power = 100

MAC &	port-l	based
system of	comp	onents

Function	Power
MAC	20
Lookup	20
Queuing	10
Security	40

Reduced power scenarios

- For each component consider three scenarios:
 - Normal operation (data mode)
 - Clock only synchronization maintained, no data present
 - Clock stopped no synchronization
- Note that complex scenarios may be possible: e.g.
 - External clock stopped, internal clock maintained
 - External synchronization maintained, internal clock stopped
 - Functions deeper into the port allow more complex solutions
- Numbers based on assumed design structures and arbitrary (ASIC) library choice

Reduced power scenarios

PHY Function	Power, operating	Clock only	Clock stopped
Transceiver	5	5	1
PLL, precode, DFE	20	20	4
Other PMA	10	10	2
FEC	40	20	8
Lane alignment, block code	15	10	2
Scrambler	10	5	2

S

	Function	Power	Clock only	Clock stopped
AC & port-based stem components	MAC	20	10	4
	Lookup	20	10	4
	Queuing	10	5	2
	Security	40	20	8
PI	ease do not print!			

cisco

- Background
- PHY power breakdown
- EEE options
- Simulated performance
- Conclusions?
- Questions...

EEE options

Effectively, different levels of sleep during LPI

- A) Line stays active with clock; LPI sent during refresh intervals
- B) All signaling stopped; quiescent state on line
- Notes:
 - 802.3az defined B) considered as default choice for 100G
 - MAC and other system components not considered
 - LLDP renegotiation might allow change particularly where wakeup sequence is unchanged
- Consider LPI requirements (assumptions) for scenarios

Continue clocking

PMA continues to send clock

- Maybe with data pattern (e.g. PMA, PRBS test pattern)
- Refresh used to (re)-verify block & lane alignment
- Wake time includes some rapid alignment markers
- Transceiver & PMA power at full level
- V. low probability of lane re-alignment during wake
- Most transmit PCS functions may freeze
- Some receive functions need to maintain phase
- Most of PHY is in clock stop state

Clock stopped

Same as 802.3az – used as basis for early 100G work

- Assumes full power down v. slow wake
- Some state preserved (e.g. DFE taps; alignment fifo depths)
- Refresh used to update state keeps changes minimal
- Most transmit & receive functions fully off
- Requires slow power-up, plus rapid alignment markers

cisco

- Background
- PHY power breakdown
- EEE options
- Simulated performance
- Conclusions?
- Questions...

Simulated performance

- Using arbitrary structural design assumptions...
- ... along with ASIC library power as guideline
- Everything normalized to 100% of operational PHY power
- 2 scenarios:
 - Clock only: Waketime = 250nS; Power saving = 40%
 - Clock stopped: Waketime = 4.5uS; Power saving = 80%
- Modified Poisson traffic
- PHY power only considered further savings: MAC etc.

Simulation provisos

. . | . . . | . . CISCO

- Traffic model scaled up from much slower
 - Results in very pessimistic savings (no long IPGs)
- Heuristic simulation, v. simplistic behavior
- Actual power savings, v. design dependent
 - Leakage losses, fast/slow power switching, etc.
- Other assumptions can be explored
- Effect of buffer & burst
 - Modeled simply as longer packets
 - May be useful for core devices

Power savings

· **I** | **I**

Notes

- Fast mode saves power (20-30%) from 2-20%
 - Key range for aggregation devices

Slow mode – saves power (up to 80%) less than 2%

- Ideal for edge devices
- (and off peak mode nights & weekends)

Buffer and burst may help for medium loads

- Particularly for core devices

Buffer and burst performance

Buffer and burst performance

- Background
- PHY power breakdown
- EEE options
- Simulated performance
- Conclusions
- Questions...

· **I** | **I**

Conclusions...

- Physical limitations will require an unacceptably long wake time for "classic LPI"
- Faster wake time possible if signaling is maintained
 - But the power savings insufficient for edge/night mode
- Define two LPI modes: fast & slow
 - (suggest) support for both mandatory for EEE
 - LLDP to negotiate fast/slow changes without link drop
- Detailed state machine & functional proposal for March
 - Fast mode added to EEE baseline (slow mode already defined)

- Background
- PHY power breakdown
- EEE options
- Simulated performance
- Conclusions?
- Questions...