Initial considerations for 100G VCSEL-MMF reaches

Jose Castro
Panduit Labs, Panduit Corp

100 Gb/s Wavelength Short Reach PHYs Study Group Geneva, Switzerland Jan 2020

© 2018 Panduit Corp. All Rights Reserved.

Coauthors

- Rick Pimpinella¹
- Bulent Kose¹
- Paul Huang¹
- Brett Lane¹
- Andrea Carena²
- Roberto Gaudino²
- Giuseppe Rizzelli²
- Pablo Torres Ferrera²
- Antonello Nespola³

(1) PANDUIT, (2) POLITECNICO DI TORINO, (3) LINKS

POLITECNICO DI TORINO

Introduction

- MMF channels have important cost and resilience advantages
 - Less expensive and more power efficient transceivers based on VCSEL sources
 - Less sensitive to contamination and misalignments
- 100G per lane using VCSEL presents significant challenges
- An evaluation of the feasibility of short reach channels at 100 Gbps per lane is needed
 - Feasibility of 850 nm wavelength important for compatibility
- This presentation addresses technical feasibility for 100G MMF channels
 - It provides preliminary modeling and experimental data for potential reaches over MMF using a 850nm VCSELs operating at 50GBaud PAM-4
 - Lengths 30 m, 50m, 100m of worst-case OM3 and OM4 are investigated

Fiber Bandwidth at 850 nm

The total bandwidth of the fiber is composed by modal and chromatic dispersion.

- The chromatic dispersion depends on the chromatic parameters of the fiber (e.g. dispersion slope and zero dispersion wavelength), and the spectral-width of the laser source
 - Assuming a VCSEL with worst case spectral width of 0.6 nm and dispersion parameter, ~ -101.2 ps/nm/km @ 844 nm, the chromatic bandwidth is ~41 GHz at 75 m and 31 GHz at 100 m
- The modal bandwidth is caused by the multiple modes of the fiber (~380 modes at 850 nm)
 - MMF are graded based on DMD measurements. At 850 nm the EMB for OM3 and OM4/OM5 is respectively 2 GHz-km and 4.7 GHz-km

Fiber Modal-Chromatic Bandwidth at 850 nm

- The worst-case modal-chromatic bandwidth, is computed
 - Here, for sake of simplicity we neglect the modal-chromatic dispersion interaction in the total bandwidth estimation
- Depending on the receiver transfer function the optimum bandwidth is around 0.6 0.75 x Baud Rate
- Assuming initially a bandwidth of 0.6 x Baud Rate, the bandwidth required for 53.125 GBaud is ~32 GHz
 - The bandwidth of the fiber alone need to be higher to accommodate for optical source and detector
 - Previous assumptions might be conservative in a highly equalized channel

Optical Link Model

Optical Link Model

Experimental setup

MMF	EMB target (MHz-km)	Three links from the same fiber spool cut consecutively	
(A) w-c OM3, EMB, 180 m	2000	(1) 30m, (2) 50m, (3) 100m	
(B) w-c OM4, EMB, 180m	4700	(1) 30m, (2) 50m, (3) 100m	

Methodology to open the eyes

Based on previously developed for 66Gbps *

^{* &}quot;Eye Skew Modeling, Measurements and Mitigation Methods for VCSEL PAM-4 Channels at Data Rates over 66 Gb/s," Optical Fiber Conference 2017, W3G.3 DO - 10.1364/OFC.2017.W3G.3

VCSEL Bandwidth and Spectral Bias

For the data shown in the next slides the bias was 9.6 mA and spectral width ~0.6 nm, VCSEL BW ~ 24GHz

Current	4 mA	7 mA	11 mA	15 mA
Spectral Width ($\Delta\lambda_{RMS)}$	0.24 nm	0.33 nm	0.60 nm	0.63 nm

MMF utilized for the experiment

Worst-case OM3

Worst-case OM4

4 Quadrant Plot. Black is initial (0,0). #1(red), #2(green), #3(blue), and #4(magenta).

Experimental Procedure and Result

- The Eye Diagrams shown in the next slides are used to study the effect of the fiber on the channel performance degradation as a function of length for worst-case OM3 and OM4
 - SSPRQ utilized, equalization using FFE, tap range: 7 to 21
 - Symbol Error Rate (SER) computed from Eye Diagrams after Gaussian fitting
- Since the current evaluation board showed a relatively high degree of electrical noise, our experiments are performed in two steps:
 - Initial tests shown here use averaged waveforms to focus the study on the dispersion components of the channel, primarily the fiber effect
 - In a second step, the non-averaged waveforms are used. Therefore all noise components are used (more data in appendices)

100Gbps PAM-4 B2B with pre-distortion, averaged waveform

Equalized, FFE with 13 taps

SER 4.83e-05 2.92e-05 6.88e-06 3.64e-06

10⁻²
10⁻⁴
0 0.5 1 1.5 2 2.5 3

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

100Gbps OM4 100m with pre-distortion, averaged waveform

(ps)

30

20

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

Symbol Error Ratio results

- SER used in the table is the worst observed in the four levels using a FFE with 15 taps using averaged waveforms.
 - Using Gray coding, and assuming that errors occur among adjacent symbol levels, the bit error ratio c an be estimated using BER=SER/2

	B2B		OM3		OM4	
	Without Pre- distortion	With pre- distortion	Without Pre- distortion	With pre- distortion	Without Pre- distortion	With pre- distortion
2m	3.4e-4	3.5e-5				
30m			4e-4	8.3e-5	3e-4	3.4e-5
50m			3e-4	3e-5	2.5e-4	2.2e-5
100m			4.7e-4	7e-4	2.9e-4	5.6e-5

■ The SER degraded significantly when waveforms were not averaged. For example, the SER for 100m OM4 was ~6e-4.

Summary and preliminary conclusions

- Preliminary experimental work evaluated the impact of modal-chromatic bandwidth on reaches
 - SER and reaches limited by bandwidth of VCSEL and photo-receiver (24 GHz and 22 GHz respectively) and noise
 - SER better than 6e-5 for 100m worst-case OM4 achieved with averaged waveforms (electrical noise removed)
 - SER better than 7e-4 for 100m worst-case OM4 achieved with non-averaged waveforms (all noises included)
- Investigation indicates that for OM4 max. reaches in the range of 75m should be considered
 - Although experiments were performed at 50 GBaud (100m OM4), they indicate the potential for 53.125 GBaud 75m with higher bandwidth components
 - Faster VCSELs and photo-receivers, e.g., 28 GHz components, can reduce the complexity of implementation
 - Reaches in the range of 75m can support a very significant percentage of MMF links used in data center.
 - Cost and complexity vs reach need to be considered

Appendices: Eye Diagrams

100Gbps PAM-4 B2B without pre-distortion, averaged eye

Pre-distorted

Received by the Scope

Equalized, FFE with 13 taps

SER 3.82e-04 2.10e-04 2.96e-05 2.18e-05

1.5

2.5

Equalized, FFE with 15 taps

Equalized, FFE with 17 taps

пі

Histograms, and Symbol Error Rate

10⁻²

10⁻⁴

0.5

100Gbps PAM-4 B2B with pre-distortion, averaged eye

Mathematical Signal (R.C)

Equalized, FFE with 13 taps

SER 4.83e-05 2.92e-05 6.88e-06 3.64e-06

10⁻²
10⁻⁴
0 0.5 1 1.5 2 2.5 3

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

Worst-Case OM3

100Gbps OM3 30m without pre-distortion, averaged eye

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

100Gbps OM3 30m with pre-distortion, averaged eye

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

100Gbps OM3 50m without pre-distortion, averaged eye

100Gbps OM3 50m with pre-distortion, averaged eye

Pre-distorted

100Gbps OM3 100m without pre-distortion, averaged eye

100Gbps OM3 100m with pre-distortion, averaged eye

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

Worst-case OM4

100Gbps OM4 30m without pre-distortion, averaged eye

100Gbps OM4 30m with pre-distortion, averaged eye

Pre-distorted

100Gbps OM4 50m without pre-distortion, averaged eye

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

100Gbps OM4 50m with pre-distortion, averaged eye

100Gbps OM4 100m without pre-distortion, averaged eye

Mathematical Signal (R.C)

Pre-distorted

Received by the Scope

Equalized, FFE with 13 taps

Equalized, FFE with 15 taps

Equalized, FFE with 17 taps

Histograms, and Symbol Error Rate

100Gbps OM4 100m with pre-distortion, averaged eye

Equalized, FFE with 13 taps

SER 9.81e-05 6.36e-05 1.84e-05 7.70e-06

10⁻²
10⁻⁴
10⁻⁶
0 0.5 1 1.5 2 2.5 3

Pre-distorted

Equalized, FFE with 15 taps

Histograms, and Symbol Error Rate

Received by the Scope

Equalized, FFE with 17 taps

Eye degradation for non-averaging for 100m worst case OM4

100Gbps OM4 100m without pre-distortion, noise included

100Gbps OM4 100m with pre-distortion, noise included

Equalized, FFE with 17 taps

