PCS, FEC and PMA Overview

100 Gb/s Wavelength Short Reach PHYs Study Group

January 2020 Geneva

Mark Gustlin - Cisco

Introduction

This describes the PCS/FEC/PMA architectures that are in use at 100Gb/s per lane today for re-use by this group

Standards Map/Summary

	Ethernet Speeds	What it is	Of Note to this group
802.3ba	100G/40G	Original 100GbE project, no RS FEC	PCS still used today (Cls 82)
802.3bj	100G	Added in KR4/KP4 RS FEC (Cls 91), backplane and copper cable	RS FEC defined (Cls 91), both RS(528,514) and RS(544,514).
802.3bm	100G	Added in CAUI-4, with or without FEC	RS(528,514) is used over the C2M interface.
802.3bs	400G/200G	Original 400GbE/200GbE project, always with FEC, 50G per lane and one 100G per lane (DR4) technology	RS FEC integrated into the PCS, always on/required, RS(544,514). Cls 119 is the PCS/FEC clause.
802.3cd	200G/100G/50G	50G per lane and one 100G per lane (DR) technology	RS(544,514) required for interfaces.
802.3ck	400G/200G/100G	100G per lane electrical interfaces (including C2M)	RS(544,514) required for interfaces. A few PHYs can use an optional interleaved FEC (not applicable to this group).
802.3cu	400G/100G	100G per wavelength PMDs	RS(544,514) required for interfaces.

RS(544,514) used for 50/100G per lane technology RS(528,514) is used for 25G technology

802.3bs Architecture – 200GbE and 400GbE

> Adopted architecture and possible implementations are shown below for 400GbE

- 200GbE is identical except for # lanes and MAC rate
- > FEC is part of the PCS sublayer utilizing the RS(544,514) aka "KP4" FEC code.
- > An extender sublayer is also defined

802.3bs PCS

- PCS processing flow is shown in the figure
- The PCS distributes data to 16 PCS lanes for 400GbE and 8 PCS lane for 200GbE
- Pre-FEC distribution plays the data out to two FEC codewords

802.3bs PMA

- From a muxing point of view, the PMA is simple, m input lanes are bit muxed to n output lanes
- Bit muxing is blind, lanes can move around, the RX PCS sorts things out
- > 4:1 muxing is used for 100G per lane interfaces

802.3cd Architecture – 100GbE

- > Adopted architecture and possible implementations are shown below for 100GbE
- > FEC is in the FEC sublayer, RS(544,514) aka "KP4" FEC
 - An AUI may exist between the FEC and PCS sublayers

802.3cd PCS/FEC Sublayers

> PCS processing flow is shown in the figure to the left, FEC to the right

802.3cd PMA

- From a muxing point of view, the PMA is simple, m input lanes are bit muxed to n output lanes
- Bit muxing is blind, lanes can move around, the RX PCS sorts things out
- > 4:1 muxing is used for 100G per lane interfaces

Direction in 802.3ck (in draft 1.0)

- > Adopted 802.3bs PCS/FEC/PMA structure for all interfaces for 400G/200G PHYs
- > Adopted 802.3cd PCS/FEC/PMA structures for all interfaces, with the exception:
 - 100GBASE-KR1/CR1, which also have an interleaved option for the FEC in addition to the above
 - This interleaved FEC is not important to this group since the C2M interface does not support this FEC option

BER Budgets

- The existing 100G per lane BER budget is split out across AUI interfaces and the PMD budget
 - 1x10⁻⁵ for the AUI interfaces
 - 2.4x10⁻⁴ for the PMD interface
 - (for 200/400GbE): Provided that the error statistics are sufficiently random that this results in a frame loss ratio (see 1.4.223) of less than 1.7 × 10⁻¹² for 64-octet frames with minimum interpacket gap when processed according to Clause 120 and then Clause 119.
 - (for 100GbE): Provided that the error statistics are sufficiently random that this results in a frame loss ratio (see 1.4.275) of less than 9.2 × 10⁻¹³ for 64-octet frames with minimum interpacket gap when additionally processed by the FEC (Clause 91) and PCS (Clause 82).
 - Any new PMD would need to match these requirements, if they do, then the current 802.3 architecture and PCS/FEC is directly applicable to this project

Example Configurations

Thoughts on the Re-Use

> There has been a big investment in the 802.3bs/cd architectures in the industry

- They are already used for 100G per lane optical interfaces for 100GBASE-DR and 400GBASE-DR4 interfaces
- 802.3cu is re-using these architectures
- > This group should re-use these industry investments as is
 - RS(544,514) FEC with 4:1 bit muxing

Thanks!