Proposals for two PMDs for 100G lambda

Jose Castro
Rick Pimpinella
jmca@panduit.com

IEEE 802.3 100 Gb/s Wavelength Short Reach PHYs Study Group May 7, 2020

Supporters:

Steve E. Swanson (Corning) John S. Abbott (Corning) Earl Parsons (Commscope) James Young (Commscope)

Do we need two PMDs?

- There are different market needs as stated in swanson 100GSR adhoc 01040920
- Data shown in castro 100GSR 01a 0120 and parsons 100GSR adhoc 01021320 indicates that the bandwidth requirements for 30 m and 50 m are similar.
- However, there are many other parameters in the optical channel to be considered.
- Data shown in bhatt 100GSR adhoc 01a 050720, a contribution based on link models, indicate that substantial improvement in component specs is required to reach $\geq 70 \mathrm{~m}$.
- It is unlikely to have one PMD that achieve the lowest cost switch-to-server and higher performance for switch-to-switch interconnect.
- This contribution utilizes the link model and assumptions proposed in bhatt 100GSR adhoc 01a 050720 to explore channel requirements for two PMD options:
- Switch-to-server, $\leq 30 \mathrm{~m}$
- Switch-to-switch, $80 \mathrm{~m}-100 \mathrm{~m}$

Experiment for technology feasibility for >75m presented with worstcase compliant fiber MMF, but might require costly specs for laser

We do not need very high VCSEL bandwidth for short reaches

TDECQ: 3.7 dB
Eye for 106Gbps 75 meters

26.5 GHz VCSEL

Switch-to-server channel: reaches

$256 \times 100 \mathrm{GbE}$ switch to server channel reach

Switch-to-server channel: reaches

Some data might suggest that majority of the reaches might require $\leq 20 \mathrm{~m}$. Other studies indicates that 30 m , will be needed. We do not know the reach distribution for the shorter reaches.

Survey of DC connections in China

- For China market, datacenter operators stated their existing deployments and expectations in the ODCC DCCNG project
(http://www.ieee802.org/3/ad_hoc/ngrates/public/19_09/guo_bwa_01_0919.pdf).
- Server to ToR connection:
- 5 m within cabinet; a small number of cross-rack interconnects up to 20 m .
- For 100 G access, due to constraints of distance and deployment (the diameter becomes thicker, the degree of buckling and the compatibility interoperating testing between vendors become complicated), server connections may turn to AOC or multi-mode transceivers.
- ToR to T1 switch connection:
- 50 m reach would cover a large percentage of their ToR to T1 switch links: $80 \%, 40 \%, 100 \%$ and

100\% by some large operators (http://www.ieee802.org/3/cfi/1119_1/CFI_01_1119.pdf)

- 70 m and 100 m is preferred depending on cost-efficiency.
bruckman 100GSR 010120

Why not relax tolerances for reaches up to 20 m (likely the majority) so they can use least expensive VCSELs? Reaches with 30 m can use the same VCSELs but with OM4 fiber. We will explore this option in slides $8-12$

Switch-to-switch channel: reaches

- Pre-term cabling shipped from Dec 2010 to Oct 2017

- 50 m supports 96.3% of the channels
- 70 m supports 98.6% of the channels

Switch-to-server : Explored Options

- Two options evaluated for switch-to-server
- Assumptions to be used in link model

Option 1 : Current Objective

Parameters assumed for current objective:
VCSELs with Spectral Width (SW) $=0.5 \mathrm{~nm}$,
VCSEL bandwidth $(B W)=25 G H z$
$\mathrm{RIN}_{12} \mathrm{OMA}=-131 \mathrm{~dB} / \mathrm{Hz}$
Tx_OMA $=0.6 \mathrm{~dB}$,
Rx sensitivity shown in bhatt 100GSR adhoc 01a 050720 Rx BW=26.26 GHz
FFE 9 taps
Optical link:
30 m over OM3
50 m over OM4

Option 2
Parameters assumed for current objective:
VCSELs with Spectral Width $(S W)=0.65 \mathrm{~nm}$,
VCSEL bandwidth $(B W)=23 G H z$
$\mathrm{RIN}_{12} \mathrm{OMA}=-131 \mathrm{~dB} / \mathrm{Hz}$
Tx_OMA $=0.6 \mathrm{~dB}$,
Rx sensitivity shown in bhatt 100GSR adhoc 01a 050720
Rx BW=26.26 GHz
FFE 9 taps
Optical link:
20 m over OM3
30 m over OM4

Switch-to-server Option 1 : Margins \& Penalties

- VCSELs with Spectral Width (SW) $=0.5 \mathrm{~nm}$, bandwidth (BW) 25 GHz and $\mathrm{RIN}_{12} \mathrm{OMA}=-131 \mathrm{~dB} / \mathrm{Hz}(3 \mathrm{~dB}$ lower than the one used in 802.3 cm).
- OM3: 30 m with a margin of $\sim 0.29 \mathrm{~dB}, 38 \mathrm{~m}$ with zero margin
- OM4: 30 m with a margin of $\sim 0.6 \mathrm{~dB}$
- OM4: 50 m with a margin of $\sim 0.17 \mathrm{~dB}, 60 \mathrm{~m}$ with zero margin

Switch-to-server Option 2 : Margins \& Penalties

- VCSELs with Spectral Width $(S W)=0.65 \mathrm{~nm}$, bandwidth $(B W)=23 G H z$ and RIN $_{12}$ OMA of $=-131 \mathrm{~dB} / \mathrm{Hz}(3 \mathrm{~dB}$ lower than the one used in 802.3 cm).
- OM3: 20 m with a margin of $\sim 0.48 \mathrm{~dB}, 35 \mathrm{~m}$ with zero margin
- OM4: 30 m with a margin of $\sim 0.41 \mathrm{~dB}, 46 \mathrm{~m}$ with zero margin

Switch-to-server Option 2: VCSEL Bandwidth

- This link is sensitive to VCSEL bandwidth, but less sensitive to spectral width.
- Up to 0.65 nm spectral width, and bandwidth between $22-24 \mathrm{GHz}$ should suffice to close the link.
- Additional margins, $\sim 0.5 \mathrm{~dB}$ are initially considered over TDECQ 4.5 dB
- VCSEL can use higher bias current, (since more SW is allowed) to provide the required bandwidth.

Switch-to-server : Comparison

- Switch-to-server is very cost sensitive and due to the short reach the dominant cost is likely to be in the transceivers.
- Both shown options can work for 30 m . Option 1 will work also for 50 m .
- Option 2 will require VCSELs with relaxed Spectral Width and Bandwidth tolerances.
- The specs for both options are significantly different.
- Can Option 2 produce significant cost advantages?

Option 1: Current Objective
Parameters assumed for current objective: VCSELs with Spectral Width (SW) $=0.5 \mathrm{~nm}$, VCSEL bandwidth (BW) $=25 \mathrm{GHz}$
RIN $_{12}$ OMA $=-131 \mathrm{~dB} / \mathrm{Hz}$
Tx_OMA $=0.6 \mathrm{~dB}$,
$R x B W=26.26 \mathrm{GHz}$
FFE-9
Rx sensitivity shown in bhatt_100GSR adhoc_01a 050720
Optical link:
30 m over OM3
50 m over OM4

Option 2

Parameters assumed for option 2:
VCSELs with Spectral Width (SW) $=0.65 \mathrm{~nm}$,
VCSEL bandwidth $(B W)=23 G H z$
$\mathrm{RIN}_{12} \mathrm{OMA}=-131 \mathrm{~dB} / \mathrm{Hz}$
Tx_OMA $=0.6 \mathrm{~dB}$,
Rx BW=26.26 GHz
FFE-9
Rx sensitivity shown in bhatt 100GSR adhoc 01a 050720
Optical link:
20 m over OM3
30 m over OM4

Switch-to-switch : Options to Explore

- Options to evaluate for switch-to-switch
- For now we should evaluate different options to achieve max. reach
- Economics of the options will determine feasibility
- Focus on the OM4 fiber reach for now

Option 1 : Current Objective ($\geq 50 \mathrm{~m}$)

```
Assumed parameters:
VCSELs with Spectral Width (SW)= 0.5 nm,
VCSEL bandwidth (BW) =25 GHz
RIN N2 OMA = -131 dB/Hz
Tx_OMA = 0.6 dB,
TDECQ = 4.5 dB
Rx BW=26.26GHz
FFE-9
Rx sensitivity shown in bhatt 100GSR adhoc_01a 050720
Optical link:
    50 m over OM4
```

Options to consider

```
Assumed parameters:
VCSELs with Spectral Width (SW)=0.4 nm - 0.45 nm,
VCSEL bandwidth (BW) =25 GHz -26 GHz
RIN 12 OMA =-132 dB/Hz
Tx_OMA = \leq 1.6 dB,
TDECQ \geq 5 dB
Rx BW=26.26 GHz
FFE-9
Rx sensitivity shown in bhatt 100GSR adhoc 01a 050720
Optical link:
    \geq80 m over OM4
```


Switch-to-switch: VCSEL bandwidth

- A target 80 m over OM 4 with $\mathrm{TDECQ}_{\max }$ of 5 dB requires $\mathrm{Tx}_{\mathrm{C}} \mathrm{OMA}=1.1 \mathrm{dBm}$
- TDECQ computation to be redefined to FFE with ≥ 5 taps and 80 m
- SW of 0.4 nm improve margins

Switch-to-switch: VCSEL bandwidth

- A target 100 m over OM4 with TDECQ $_{\max }$ of 5.5 dB requires $\mathrm{Tx} _\mathrm{OMA}=1.6 \mathrm{dBm}$
- TDECQ computation to be redefined to FFE with ≥ 7 taps
- SW of 0.4 nm needed

Switch-to-switch Channel: Comparisons

- Based on the model assumptions, 80 m reach with 1.5 dB Connector loss over OM4 requires:
- $\leq 0.42 \mathrm{~nm}$ spectral width
- $\leq-131 \mathrm{~dB} / \mathrm{Hz}$ RIN $_{12}$ OMA
- TDECQ=5 dB
- Tx_OMA of 1.1 dBm
- Based on the model assumptions, 100 m reach with 1.5 dB Connector loss over OM4 requires:
- $\leq 0.4 \mathrm{~nm}$ spectral width
- $\leq-132 \mathrm{~dB} / \mathrm{Hz}$ RIN $_{12}$ OMA
- TDECQ=5.5 dB
- Note precedent, FC-PI-7 used VCSELs with TDECQ max= 5.5 dB , at 28.9 GBaud.
- Tx_OMA of 1.6 dBm , or a 1 dB connector loss channel link with Tx_OMA ~1.1 dBm
- Option 1, reach is below 60 m , and improvements to achieve longer reaches can impact on the cost for switch-to-server link.

Summary \& Discussion

- To better address the market needs we need to have two PMDs for switch-to-server and switch-to-switch.
- Accelerate development of switch-to-server with perhaps todays' technology.
- RIN improvement to be considered by manufacturers
- Evaluate carefully the maximum reach supported by manufacturing in 2022 for switch-toswitch interconnections.
- Initial proposal for two PMDs:
- switch-to-server 30 m (two options, which one can produce less expensive channels)
- Option 1, current option, 30m using OM3 (50 m using OM4)
- Option 2 provide relaxed VCSEL tolerances for,
- $\quad \leq 20 \mathrm{~m}$ OM3, (aligned to lowest cost considerations from nering 100GSR 010120 and others)
- $\leq 30 \mathrm{~m}$ using OM4
- If cost is low enough, it could replace the need for AOCs
- switch-to-switch interconnections for $\geq 80 \mathrm{~m}$
- Intend to cover >80 \% of use switch-to-switch interconnection use cases
- RIN is a critical parameter based on model, specially for switch to switch.
- Need more experimental study to validate modeling assumptions.

