PIN-PD based ONU for 10GE-PON (3)

Naoki Suzuki and Yoshifumi Hotta Mitsubishi Electric Corporation

Supporters

Toshiaki Mukojima, OKI

Shinji Tsuji, Sumitomo

Yoshifumi Hotta, Mitsubishi

Naoki Suzuki, Mitsubishi

San Francisco meeting summary

Cost [1], productivity, technology, and scalability advantages [1-2] for PIN-PD at ONU have been proposed

[1] 3av_0707_lee_1, [2] 3av_0707_suzuki_1

- ➤ According to the straw poll #11, PIN-PD supporters claim that the primary reason of concern for the APD at ONU is the cost impact
- ➤ On the other hand, the straw poll #12 result shows that APD supporters concern that the PIN-PD at ONU has potential problems associated with high power (mainly eye-safety issue)

In this presentation, we propose a new downstream power budget to meet eye-safety requirements. In Addition, PIN-PD based ONU's advantages are updated.

Safety requirements for 10G-EPON(1/3)

Class1 (+10dBm) *at open ports of PON 1:N coupler*IEC60825-1

──→ Maximum OLT output power < + 13dBm

1 : N Splits	Maximum output power from open port of PON coupler
2	+10dBm
4	+7dBm
8	+4dBm
16	+1dBm

Safety requirements for 10G-EPON(2/3)

Class1 (+10dBm) at OLT PON-interface output port

- Eye-safety control + Physical shutter
- Employ a physical shutter to avoid single failure accident of the eye-safety control

Safety requirements for 10G-EPON(3/3)

Class1M (+21.3dBm)* with 8c ribbon fiber (worst case) in the central office

*IEC60825-2

Normal case: When 8c fiber port is open, each OLT output power is suppressed by eye-safety control, and the total output power is kept Class1M. Single OLT failure case: Total output power is less than +13dBm.

Even in the case of single OLT failure accident, optical output level of 8c ribbon fiber remains under Class 1M.

New Power Budget Proposal

- Ensure the 10GE-PON required eye-safety level
- Available Tx power range (3dB) and Rx sensitivity

<u>Downstream Power Budget : PIN-PD ONU B++</u>

	Takizawa ^(*3)	Proposal	Remarks
CHIL (dB)	29	←	
Path Penalty (dB)	1	←	
OLT launch (min)	+10 (+11)	+10	Optical amplified OLT
OLT launch (max)	+13 (+14)	+13	Eye-safety control
ONU Sensitivity	-20 (-19)	-20	E-FEC : e.g. RS(255,223) BER=10 ⁻³
ONU Overload	-2 (-1)	-2	

[3] 3av_0707_takizawa_1

San Francisco

Plenary Meeting Material

PIN-PD advantages

(3av_0707_suzuki_1)

PIN-PD System

Basic Concept:

By use of experienced-technologies (e.g. EDFA, low-power EML, pin-PD ONU), we can simply realize all 10Gbps PMD classes with advantages of cost-effective, high-reliable PON systems and stable supply.

PIN-PD System D/S (e.g.)

	Device	Specifications	Target (Difficulty)
OLT	Low-EML	-1 dBm, ER 9 dB	10GBASE-ER
OLT	EDFA*	+10 dBm - +12 dBm	MSA w/ power control (APC)
ONU	PIN-PD	-16 dBm @ 10 ⁻¹²	10GBASE-LR+α

^{*} Hi-power SOA is a prospective choice in future

Cost (1/2)

Relative cost figures based on current market price of XFP and EDFA
<u>Relative cost figures</u>

	Device	Lee	Proposal	Remarks
	L-band EML TOSA	10	6	ER (40 km)
OLT Tx	L-band Hi power EML TOSA	-	18	Screening
'^	L-band EDFA Gain block	40	19	MSA (Multi-source-agreement)
ONU	APD ROSA	3	2.4	
Rx	PIN-PD ROSA	1	1	

Cost reduction:

1G/10G co-ex - 45 %

10G Greenfield - 60 %

Cost (2/2)

Comparison results of Relative total D/S cost

Relative total D/S cost = ONU Rx x Subscribers + OLT Tx

Technology (1/5)

1. EDFA Advantages (PIN-PD System)

- Excellent optical gain can afford to support hi-class power budgets of over PX20 and B++, and mitigate TOSA (Tx source) specifications
- Very small and low power consumption (L-band) gain block superior to MSA, which can not impact on OLT-card size, is available

Very small EDFA (Vender A)

72 x 50 x 9 mm (Business Card)

 $(*MSA:90 \times 70 \times 15 mm)$

Output power : +11 dBm

Gain bandwidrh: 1560 nm - 1600 nm

Power consumption: 1 W (typ.)

(uncooled 1.48 um pump, control circuits)

Technology (2/5)

2. Hi-power EML Problem (APD System)

- Very large LD injection current of more than 180 mA 200 mA (reach the maximum rating of standard LD) can cause reliability degradation
- Required target power of more than +4.5 dBm indicates that we need "Screening" in mass production and it yields negative impact on cost

Technology (3/5)

3. Hi-power 10Gbps Transmission

item	Permitted fiber input power of 10Gbps signal	remarks
SBS	+ 15 dBm (w/ frequency modulation)	Figure 1
XPM	+ 17 dBm	Dr. Piehler, XPM.pdf, May 30
SRS	+ 16 dBm	Figure 2

Fig.2 SRS calculated result

Technology (4/5)

4. Eye-safety

- Eye-safe control can keep Class1(<+10 dBm) output at "open" condition</p>
- A connector with safety-shutter is also effective for safety design

Technology (5/5)

5. Power Budget Proposal

- Assuming a worst case scenario of 8c ribbon fiber wiring in CO
- Optical amplified OLT can successfully control the output power range of +10 dBm - +12 dBm with simple APC (Automatic Power Control)
- +12 dBm x 8c (9dB) = +21 dBm : Class1M (< +21.3 dBm) HL</p>

	Takizawa ^(*1)	Proposal	Remarks
CHIL (dB)	29	←	
Path Penalty (dB)	1	←	
OLT launch (min)	+10 (+11)	+10	Optical amplified OLT with APC
OLT launch (max)	+13 (+14)	+12	
ONU Sensitivity	-20 (-19)	-20	E-FEC ^(*2) or RS(255,239) + -17 dBm@10 ⁻¹²
ONU Overload	-2 (-1)	-3	

(*1) 3av_0705_Takizawa_1, (*2) 3av_0705_Daido_1

Scalability

PIN-PD ONU:

Temperature insensitive behavior of pin-PD based Rx can support "outdoor operation" of ONU (-45 degreeC - +85 degreeC) "

Optical amplified OLT:

Optical amplifier's wide input dynamic range (w/ APC) can support various types of "prospective" transmitter sources (EML, Chirp managed DM-LD, DFB+LN, etc..)

PIN-PD Advantages

Cost	PIN-PD system is the promising candidate for cost-effective 10GE-PON : cost reduction of -45 % to -60 % (compared to APD system)
Productivity / Stable supply	PIN-PD system is suitable for mass-production (proven by B / GE-PON). (Ref. 3av_0705_suzuki_1.pdf, Geneva)
Technology	Experienced-technologies (e.g. EDFA, low-power EML, pin-PD ONU) can provide higher reliable PON systems supporting hi class budgets of over PX20 and B++.
Scalability	PIN-PD system can provide the outdoor ONU and various types of OLT Tx sources for market demands.

Answers to Geneva

Downstream: PIN-PD at ONU with amplified EML at OLT

Pro	Con
Lowest cost solution (fully subscribed); system cost should comprehend replacement of ONUs during lifetime of OLT	More costly solution (fully subscribed and first costs)
Simple control electronics at ONU; does not require calibration (e.g. temperature)	Size of OLT too big, requires Tx and control electronics at OLT, power dissipation
Continuity with 1G EPON for easy/fast migration to 10G for existing suppliers	Questions of booster SOA reliability and availability for high power
Total volume of 10G PINs greater than that of 10G APDs; higher reliability of PIN over APD	Possible WDM crosstalk in OLT
All components commercially available today	Concern over optical surge from EDFA
***	Concern for SRS penalty on analog video and XPM between 10G DS and video
	High power handling concerns

APD at ONU with high power (+2 or +3 dBm minimum output) EML at OLT

Expensive ONU (fully subscribed system)
system;
Higher complexity in ROSA; multiple DC voltages required
Twice power consumption at ONU (withdrawn)
Target spec for Tx power (+2-3 dBm) is lifficult and beyond current technology
Complex adjustment process
֡

- ① PIN-PD is lowest cost solution: Cost reduction of -45 % to -60 % at co-existence / fully subscribed systems
- 2 Very small and low power dissipation EDFA is available
- ③ EDFA is one of the reliable choices for 10Gbps-OLT booster. Hi-power SOA is also good prospective choise because it has the potential to be small packaged (integrated) transmitter.
- 4 Hi-power (> + 15 dBm) 10Gbps transmission and eye-safe control/shut down control (< Class1 HL) have already been demonstrated.
- (5) Hi-power EML's required injection current of more than 180 mA 200 mA (reach the maximum rating of standard LDs) can cause reliability (FIT) degradation. Also, a target power of more than +4.5 dBm is difficult in mass production.