ONT Power Saving Proposal

Dave Hood – Ericsson
Denis Khotimsky - Motorola
Frank Effenberger - Huawei
Dan Parsons – BroadLight
Eli Elmoalem - BroadLight

ITU Q2/SG15 Stockholm, June 2008

Purpose

- Quantify power shedding using current technology for NA ONT application
- Quantify ONT battery requirements using power shedding
- Identify impact to G.984.x
- Outline power saving technology trends

NA ONT Power Consumption Profile

NA ONT Key Components

Maximum power consumption from data sheets.

Power Profile of Key Components

Maximum power consumption from data sheets
Unlikely that all components will exhibit maximum power in one ONT
Average of Max powers from 3 leading GPON XCVR vendor
DC-DC efficiency 80%

NA ONT Power Shedding for Lifeline POTS

Power Saving Options Summary

Low-Activity to One Active POTS Profile

One port of Dual SLIC active. Includes 25mA loop current from internally generated 48V into 600 ohm load * Current for 24V battery feed and 20mA loop current.

ONT Battery Conservation

Battery size for 8 hrs operation considering:

Talk time with 48Vbat and 25mA loop current No Delay in implementing power shedding

Talk min/hr	6	15	30	45
Power Shed Delay (min)	0	0	0	0
Battery (Ah)	2.02	2.26	2.67	3.07
Phone @ 24Vbat, 20mA loop current	1.96	2.12	2.38	2.64

Fixed battery size of 3.6Ah for 8 hrs operation considering:

Talk time with 48Vbat and 25mA loop current

Delay in implementing power shedding

Talk min/hr	6	15	30	45
Power Shed	15	12	/A A* Q/	5 /O*
Delay (min)	10	IZ,	/14* 8/	11* 5 /9*
Battery (Ah)	3.6	3.53	3.51	3.6

^{*} Phone @24Vbat, 20mA loop current

EU Style ONT Power Comparison

ADSL2+ Modem 5W

PX-10 EPON, Class A/B and Class B+ have same power consumption

Silicon Process Power Impact

Dynamic power \sim freq x capacitance x voltage²

GPON ONT SoC Power Reduction Options

- o Powering down sections of chip not in use o Maintain GPON TC layer operation
- o Reducing clock speed during low-activity
 - o Dynamic power ~ freq x capacitance x voltage² o Can reduce power by 50% of digital sub-units
 - o Processing speed not necessary during low-activity
- o Further integration may reduce overhead circuitry otherwise require in separate chips
 - o Common memory usage, power converters, I/O lines, etc.

Voice - Real Power-Savings Opportunity

- o Traditional POTS phone 100 yr old legacy
 - o On-hook voltage >24V*
 - o Off-hook current $>20mA \sim >0.5W(1.2W, 48V@25mA)$
 - o High voltage ringing (>40Vrms) into 5 REN load
 - o Backup battery typically 3.6 or 7.2 Ah, with corresponding charging capacity and wiring
- o Compare cell phone power consumption
 - o 3.7W, 900mAh battery
 - o On-hook/standby 10mW (3mA) draw, 300h standby
 - o Off-hook/talk 800mW (225mA) draw, 4h talk time

^{*} Typical numbers, may vary from one operator to another

Lifeline POTS Possibilities

- o We are in the process of obsoleting millions (billions?) of analog television sets
- o Could we obsolete legacy telephone sets?
- o Offer "free" replacement phones as part of a green FITL upgrade?
 - o DECT 6.0 phone base station in the ONT
 - o Commercially available DECT 6.0 handsets
 - o 9h talk time (16 day standby)
 - o Commercially available DECT base station single chip ICs
 - o Or, a little adapter kit that translates energyefficient FITL telephony to old-style POTS?

Tele - (word root: remote)

- o Telecommuting
 - o Per week: one tank of petrol for commuting vs ONT power + PC power (even 24x7)
- o Teleconferencing
 - o Compare travel to FSAN-ITU meetings to potential teleconference energy use
- o Our companies are doing it why not ourselves?

Summary

- o No impact to G.984.x
- o Power shedding can save >70% of active ONT power
 - o Technique commonly used throughout industries laptop PCs, PC monitors, cell phones
- North American ONT battery size can be reduced by
 >50% with currently available technology
- o Future SoC semiconductor technology and low-activity functions will reduce power even further
- o Options available for lower power voice service