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1. Mode coupling coefficient with an arbitrary polarized input beam 
Under a weakly-guiding approximation for the electromagnetic filed in optical fi-

bers, the longitudal components of the electric and magnetic fields are negligible and the 
fields are polarized in the fiber cross section plan. Due to the circular symmetry, the solu-
tion to the Maxwell equations is given in a separable form [1]:  

)exp()exp()( tiziilrF ωβθ −Ψ=                                            (1.1)  
where zr ,,θ are the triple of cylindrical coordinates and l is an integer describing the 
azimuthal dependence of the field and β is the propagation constant. The radial part 

)(rΨ is calculated from: 
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Take into account two orthogonal polarization state, we construct a set of vector fields 
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which we use for the decomposition of the input field. 
 

The input field which has an arbitrary polarization can be written as [ 
( )( )yx, ))

yx ccrf += θinE                                                     (1.4) 

where the parameter yx cc  and  are complex numbers and 122 =+ yx cc . 
The mode coupling coefficient can be calculated by the overlap integrals of the input 
field and the modal field. We obtain the modal coupling coefficient as 
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The two terms at the right hand side are corresponding to the mode coupling coefficient 
at two orthogonal polarization directions, respectively. To simplify the following discus-
sion and to maintain the generality, we assume that 0 and)exp( yx == cic φ , which case 
is equivalent as rotating a linearly polarized light . Then the mode coupling coefficient 
can be written as 
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From (1. 6), we can see that rotating the polarization state of the input beam will 
change the relative location of the input beam and the modal field. If we use the input 
beam as the reference, it is equivalent as rotating the modal field by an angle of φ− . 
Similarly, if we use the modal field as the reference, it is equivalent as rotating the input 
beam by an angle of φ . 

 
2. Modal power coupling coefficient and the power transfer between modes 

Let’s use the modal field as the reference. From (1.6), if the input beam is symmet-
ric around the fiber core, the rotation of polarization will not change the mode coupling 
coefficient. Assume an off-center input Gaussian beam, linearly polarized and rotated by 
an angle of φ ,  the electrical field of the input beam can be written in the cylindrical co-
ordinate system as: 
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where φand0r define the center of the Gaussian beam. 
 

Let us consider one of the LP mode LP(l,m), l and m are angular index and radium 
index respectively. The modal field of this mode can be written as: 

 )exp()(lm θilrE Ψ=  and [ )πθ 2,0∈                                                               (2. 2) 
 
The mode coupling coefficient is the overlap integral of (1) and (2), which is  

θrdrdEEC lmin∫∫=                                                                                      (2. 3) 

Substitute (1) and (2) to (3), we obtain 
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, which is independent of θ . 

We can rewrite (2. 4) as: 
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(2. 5) 
 

The first term in (2. 5) corresponds to the field coupling coefficient of the degener-
ated cos mode and the second term in (2. 5) corresponds to that of the degenerated sin 
mode. It is clear from (2. 5) that the electrical field coupling coefficients of both degener-
ated mode are function of φ , given 0r . 
 
Now let’s consider the intensity of this LP(l,m) mode. 
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Given 0r and at a fixed radius r, the intensity coupling coefficient of cos mode )(cos rP is a 
function of φ , so does  )(sin rP . This indicates the energy transfer between these two 
modes. However, the total intensity of these two modes is a constant.  
 

In a real fiber link, modal selective loss may exist at the connectors or the fiber it-
self due to different reasons (this statement needs to be verified by more work and ex-
periment, hopefully) [2]. For instance, the cos mode experiences more loss than the sin 
mode. In this case, the total intensity of this LP (l,m) mode is not a constant anymore and 
depends on the relative location of the input beam and the modal field. In addition, if the 
modal selective loss is fixed, lower order mode (smaller l) will suffer more variation. 

 
3. Impact of connector and the simulation approach 

It is known that a perfect multimode fiber transmits its guided modes without en-
ergy conversion to the other possible guided modes or continuous spectrum. However, 
the perturbation to the index profiles and imperfections introduce the power coupling 
among different modes. In the previous TIA work, one of the assumptions is the mode 
coupling between mode groups is completely absent and that coupling within a group is 
100%. Therefore, the coupling amplitude from input mode vml ,,Ψ  (mode from the first 

fiber) to the output mode ''' ,, vml
Ψ  (mode in the second fiber) is calculated as [3]: 
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where r is the offset vector. The power coupled into output mode is calculated by: 
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where in
vmlw ,,  is the power in mode l,m,v. Based on the assumption that the modes within 

one modal group have 100% mode mixing, the power in mode l,m,v can be written as: 
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 where uN  is the number of modes present in that modal group. 
 



This method worked well in the study of 1Gb/s Ethernet. In previous TIA work, the 
above formulas were used in the simulation of long fiber and short fiber patch core as 
well. If fiber is not long enough, the equation (3. 3) is not valid any more, which causes 
energy redistribution among modal groups. However, in 1Gb/s Ethernet study, using off-
set launch, the modal delay after propagation is relatively small compared to the bit pe-
riod. Hence the potential power variation between different modal groups does not intro-
duce dramatic pulse distortion in time domain. Therefore, it is reasonable to ignore the 
fact that in short fiber the modes within a modal group are not mixed completely. 
 

In 10Gb/s system, modal delay of different modal group after propagation is com-
parable to the bit period or even larger, especially for center launch case. The variation of 
power coupling of different modes will introduce pulse distortion. Therefore the assump-
tion of 100% mode mixing in one modal group needs to be reexamined, depending on the 
setup of MMF link. In the following paragraphs, we descript the improved method to 
simulate the impact of connector offset in a 10Gb/s MMF link. 

 
The proposed MMF link is shown as Fig 1. The typical length scale of mode cou-

pling within mode groups is hundreds meters. The first piece of multimode fiber in the 
proposed fiber link, as shown in Fig. 1, is only 10 meters, which is much shorter than the 
length scale that allows mode coupling with mode groups to happen. Therefore, every 
individual mode needs to be considered separately at the connector C2. 

 
In addition, due to different propagation constant of modes, the arriving time at the 

end of the first MMF (C2) varies accordingly. The modal field (l, m) of the input fiber 
can be written as: 
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where ωβ zt mlml ,, = , denoting the relative delay due to modal dispersion. 
 

The input electrical field profile to the second fiber can be obtained by superposing 
the modal fields of the first fiber. We can write: 
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where mlc , is the mode coupling coefficient calculated from (2. 5), taking into account an 
off-centered launching condition. If substitute (3. 4) to (3. 5), one can easily find that the 
electrical field profile at the end of first fiber varies with time or in other words the com-
posite electrical field of different modal group. For a given modal group, the field profile 
is not symmetric around the fiber core any more. An example of output field profile is 
given in Fig. 2. 

 
For a given modal group ?, the mode coupling coefficient for mode (l’,m’) in the 

second fiber can be calculated from 
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ml  is the composite modal field of modal group ? and 

',' mlE  is the model field of mode (l’,m’) in the second fiber. 
 

In considering the offset at C2, one can write ),,,( 0',' ϕθ rrGE ml = , where parameters 

ϕand0r define the offset center. For a given 0r , )( ,',' mlml tc is a function of ϕ . The power 

coupling coefficient for mode (l’,m’) is calculated by )()()( ','
*

','',' ϕϕϕ mlmlml ccp = . There-

fore, to simulate possible impulse response due to an offset 0r , one needs to consider 
varying ϕ from 0 to p, as illustrated in Fig. 3. 
 

In Fig. 3, the dashed circle and the solid circle are represented two possible offset 
with magnitude of 0r . It is clear that the overlapping of the composite modal field from 
the first fiber to these of the second fiber depends on the offset center. 

 
4.  Proposals for Simulationing 10Gb/s MM Link 

 
  In the simulation of proposed link: 

1)  It is possible to use the result of scalar wave equation to simulate the polariza-
tion rotation in a multimode fiber link. 

2)  Polarization rotation of the input beam is equivalent as rotating the modal field 
in the fiber. The power coupling coefficient of individual modes varies ac-
cordingly, causing the energy transfer among the two degenerated modes. 

3)  The pulse variation due to the change of polarization can be simulated if the 
mode mixing is not completed or there is a mode selective loss in the link. 

4)  Due to the short length of the first MMF in the proposed link, modes within 
one modal group need to be treated individually. 

5) The modal field profile at the end of first MMF varies with time and is not 
symmetric around the fiber core with an off-centered launching condition. 

6)  The overlap of modal fields at the connector depends on the relative location 
of the offset center to the reference coordinates and the pulse response will 
change accordingly. 
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