Let the sequence length $=\mathrm{N}$ bits. Assume that X bits are equal to 1 (the rest being zeros). These 1 's can be distributed in any way throughout the N bit sequence. The disparity at the end of this N bit sequence is:
$\Delta R D=X-(N-X)=2 X-N$
The probability that X 1's are randomly generated in N trials is given by the binomial distribution, (assuming that the probability of a $1=$ probability of a $0=1 / 2$)

$$
p(X, N)=\binom{N}{X}\left(\frac{1}{2}\right)^{N} \text { where }\binom{N}{X}=\frac{N!}{X!(N-X)!}
$$

The probability that the disparity is less than a certain value, RD_{0}, in a sequence of length N is given by the cumulative distribution:
$P\left\{\Delta R D<R D_{0} \mid N\right\}=\sum_{i=1}^{X} p(i, N) \sum_{i=1}^{\left(R D_{0}+N\right) / 2} p(i, N)$
This probability is doubled if only the magnitude of the disparity, and not the sign, is considered.

The figure illustrates the magnitude of the disparity as a function of the sequence length for a given probability of occurrence. For example, with a sequence length of 2000 bits, a running disparity of >350 will occur with probability 10^{-15}, and a disparity of >300 will occur with probability 10^{-12}. For a sequence of 4000 bits, a disparity of >500 occurs with probability 10^{-15}.

