Buffer in TDD PHYs

Presenter: Max Turner (max.turner@ieee.org) Project: IEEE P802.2dm - ISAAC Event: 2024 July 802 Plenary in Montreal, CAN

EEE P802.3dm Task Force - ISAA

IETHERNOVIA

July 16th, 2024

IEEE Std 802.3ch-2020: 44.1.3 Relationship of 10 Gigabit Ethernet to the ISO/OSI reference model

AN = AUTO-NEGOTIATION SUBLAYER MDI = MEDIUM DEPENDENT INTERFACE PCS = PHYSICAL CODING SUBLAYER PHY = PHYSICAL LAYER DEVICE PMA = PHYSICAL MEDIUM ATTACHMENT

PMD = PHYSICAL MEDIUM DEPENDENT WIS = WAN INTERFACE SUBLAYER XGMII = 10 GIGABIT MEDIA INDEPENDENT INTERFACE * AUTO-NEGOTIATION IS OPTIONAL

Figure 44–1—Architectural positioning of 10 Gigabit Ethernet

TDD with symmetric MII

TAS¹⁾: Delay vs. Bandwidth

Maximum available TAS bandwidth depends on the Ratio T_{GO}/T_{OC} , but TAS Delay (T_{LA}) depends on the absolute difference of T_{OC} - T_{GO} !

 T_{oc} ... OperCycleTime T_{Go} ... GateOpenTime T_{oc} = gaps+ ΣT_{Gox}

¹⁾ IEEE Std 802.1Qbv[™]-2015 Enhancements for scheduled traffic

Regular TAS queuing

TUALIZING VEHICLE COMMUNICATION

A simplified TDD example

- Run the TDD-Link at 10Gbit/s in both directions.
- We want to allocate a $100 \times$ greater BW to the Down direction than to the Up direction.
- In order to not violate Ethernet fundamentals, the 1 time unit Up needs to support at least a 1542Byte Frame; so the Up gate needs to be open for at least $T_{GOA} = 1.2336 \mu s$.
- Therefore: $100 \times 1.2336 \mu s$ = $123.36 \mu s$ = T_{GOB}
- Adding re-sync gaps of 0.3μ s, one can round this to the following simplified TDD cycle:

Up: $123.4\mu s + gap: 0.3\mu s + Down: 1.3\mu s + gap: 0.3\mu s = 125.3\mu s = T_{OC}$

Transmission delays in the simplified example

- An upstream Frame eligible for transmission on the Switch's TDD Link at instance ① of the TDD cycle must wait for 124µs
- A downstream Frame eligible for transmission on the Camera's TDD Link at instance ② of the TDD cycle must wait for 1.9µs
- Instance ③ of the TDD cycle lies the frame length before instance ②. I.e. the Frame is too long to be transmitted during the gate open time for Down, adding a maximum of 1.23μ s to the delay at @. Contribution to:

7

VIRTUALIZING VEHICLE COMMUNICATION

Does the Gate have to be open for a full Frame?

- If most upstream Frames are small, could one reduce the gate open time for Up to e.g. 0.1μ s?
- Down: $100 \times 0.1 \mu s = 10 \mu s$
- Unfortunately the gaps will likely not change, therefore the wasted time goes up
- And what to do if there is a larger Frame to be transmitted?

- Now a small upstream Frame eligible for transmission on the Switch's TDD Link at instance \oplus of the TDD cycle must wait for only 10.6 μ s

Need a Frame Buffer

- If the Medium is not available for transmission of a full Frame, it must be buffered somewhere
- Option 1: Buffer in the PHY and use CSMA/CA half-duplex signalling from the PHY up to prevent new Frames to be transmitted across the MII
 - The PHY usually does not know about Frames
- Option 2: Buffer in the MAC and ...
 - Make sure only full Frames traverse the MII
 - No Idle-Symbols traverse the MII, when the Medium is not available

Using Preemption and EEE's LPI

VIRTUALIZING VEHICLE COMMUNICATION

Conclusion

- Full-Duplex operation would be way nicer to handle ...
 - No Buffering
 - No wait times to access the half-duplex TDD controlled Medium

Max Turner

Utrechtseweg 75 NL-3702AA Zeist The Netherlands +49 177 863 7804

max.turner@ethernovia.com

ETHERNOVIA

Thank You for your attention!

Contribution to: �**IEEE**