PHY Technical Options

William Lo September 14, 2023

14 Sep 2023

IEEE 802.3 Ethernet for Automotive Study Group

Presentation Goal

- List out some technical paths that project can take
 - Use 10 Gb/s downstream as examples
 - Similar concept for 1, 2.5, 5, and 25 Gb/s

- We are not
 - Choosing a solution
 - Saying which options are better or worse

Basic Assumptions

- Technical feasibility of 802.3bw, 802.3bp, 802.3ch, 802.3cy are taken as a given
 - i.e. 100BASE-T1, 1000BASE-T1, 2.5GBASE-T1, 5GBASE-T1, 10GBASE-T1, 25GBASE-T1
 - Technical feasibility work has been done already no need to rehash
 - Includes EEE where applicable
- We are looking for a more optimal solution for asymmetrical use case

Basic Assumptions

- Assume 10G downstream is PAM4 in all examples
 - Uniform comparison
 - Does not preclude solution that is not PAM4
- Upstream speed is 100 Mb/s
- Running slower is easier than running faster
- Requirement is to run on single cable

Key to Diagrams

- Following diagrams helps with qualitative understanding on the signaling over the PHY
 - Both width and height are not to scale
 - Elements are not proportional in size (be able to see details but also fit on page)

EEE Option – Basic Optimization

- Baseline Quiet/Refresh, Wake/Sleep (As currently defined)
 - Refresh in PAM2
 - Need to recover OAM symbol near end of refresh
 - Refresh cycle active ratio 1:96
- Basic Optimization
 - Tag additional data with refresh
 - Refresh + data cycle active ratio approx 3:96 in PAM2, 2:96 in PAM4
 - Startup optimization
- Downstream 5.625 Gbaud
- Upstream data 5.625 Gbaud PAM2 or PAM4

Refresh + OAM symbol	l	Wake/Data/Sleep	
Refresh with data			

14 Sep 2023

EEE Option – Lower Latency

- Basic Optimization
 - Refresh + data cycle active ratio approx. 3:96 for PAM2

- Lower Latency
 - Trade cycle time for latency
 - example 3x lower latency
 - Refresh + data cycle ratio approx 5:96 for PAM2

EEE Option – Slower Upstream

- Basic Optimization
 - 5.625 Gbaud upstream

- Slower Upstream Burst Rate
 - Trade cycle ratio for lower upstream speed
 - Example 4x slower:
 - 1.4 Gbaud, ratio ~ 12:96, PAM2

14 Sep 2023

FDD Option

• No overhead needed

- Ratio 1:1
- Downstream 5.625 Gbaud
- Upstream approx. 0.1 Gbaud +/-
 - Can be like 100BASE-T1 or slowed down 1000BASE-T1
 - Modification to carry OAM channel, possibly lightweight FEC

TDD Option

- Baseline Case
 - Run slightly faster since half duplex
 - Downstream ~6 Gbaud
 - Upstream 2 to 4 Gbaud PAM2
- Lower latency
 - Trade increased downstream speed for latency
 - Downstream ~7 to 8 Gbaud
 - Upstream 2 to 4 Gbaud PAM2

Making MAC Interface Full Duplex

• Internal buffering in PHY smooths out stop and go

- We are not buffering Ethernet Frames
- We are buffering the stop and go nature of the layer 1 bit stream
- Buffer somewhere between PCS and PMA (roughly)

Buffer Placement (Approx)

IEEE 802.3 Ethernet for Automotive Study Group

14 Sep 2023

MAC Interface & Buffering

- Buffers are constant latency
- Size of buffer proportional to latency
- MAC interface is constant speed to defined IEEE interface
 - 10G downstream XGMII, 100M Upstream MII
- Buffer latency if MAC interface is constant speed
 - Store up delay at the TX side
 - Playback at RX side minimal delay

Summary Table of Examples

• 10 Gbps downstream, 100 Mbps upstream

	Downsteram	Upstream	Buffering/	Upstream
Mode of Operation	Symbol Rate (PAM4)	Symbol Rate	Latency	Active Ratio
Basic Optimized EEE	5.625 Gbaud	5.625 Gbaud	Upstream Only	~ 3:96
3x Lower latency EEE	5.625 Gbaud	5.625 Gbaud	Upstream Only	~ 5:96
4x Slower Upstream	5.625 Gbaud	1.406 Gbaud	Upstream Only	~ 12:96
FDD	5.625 Gbaud	0.1 Gbaud +/-	None Needed	
TDD	~6 Gbaud	2 to 4 Gbaud	Both Directions	
TDD Lower Latency	~7 to 8 Gbaud	2 to 4 Gbaud	Both Directions	

IEEE 802.3 Ethernet for Automotive Study Group

Conclusion

• There are many viable options that are technically feasible

• Task Force to evaluate direction we take

THANK YOU

IEEE 802.3 Ethernet for Automotive Study Group

