Potential Improvements to Strawman for PHY Baseline Proposal

Contribution to IEEE 802.3: 40GBASE-T PHY Baseline Proposal Ad Hoc 27 Feb 2014 Teleconference

George Zimmerman, Ph.D. CME Consulting

Overview

- Motivation
- Recap of Strawman
- Motivations Power & Cost
- Review of Potential Improvements
- Thoughts for Discussion

Motivation

- Strawman approach reuses technical and standards development from 10GBASE-T
 - Reduces risk and improves time-to-standard
- Does not preclude 'upgrading' possible areas
 - Lessons learned for robustness, additional power savings and ease of implementation
- This contribution expands on the suggestions in zimmerman_3bqah_02_1213.pdf, slide 6

Recap of Strawman

Baseline Proposal

- Baseline PHY proposal:
 - Use PCS, Framing and Line Coding from Clause 55
 - Increase symbol rate 4X to 3200 Mbaud
 - Drop transmit power to ~ 0 dBm at MDI
- Areas for improvement/consideration:
 - Backchannel for THP dynamic update?
 - Revised FEC to cover uncoded bits?
 - · Multiple ways of doing this
 - Faster startup?
 - Negotiated patch-cord operational mode?
 - Remove PBO?

Motivations – power & cost

- Cost = ease of implementation, higher yields, lower risk
 - Reuse of 10GBASE-T technology, easing the channel go a long way towards this end
 - Interoperability is a complexity and time-to-market risk
 - Relaxations on MDI specifications could save component cost
 - Robustness to PCB layout variations could save system cost
- Power = a war of Milliwatts
 - No single magic bullets, lots of 5-10% pieces
 - Designer-specific: allocation of implementation loss
 - Standards-related: tolerance to defects
 - E.g., Impulse noise, NEXT and Echo

Remove PBO?

- WHAT IT IS: Remove power back off negotiation
- WHY WAS 10GBASE-T THE WAY IT WAS:
 - Power back off based on Insertion Loss was important to managing Alien Far-end crosstalk (AFEXT)
- WHY WE MIGHT RECONSIDER:
 - Shielded channel and reduced distance mitigate AFEXT concern
 - Ease of use: Startup time and interoperability would be aided without impacting adaptation process
- COSTS/POWER examined in contribution by Peter Wu, Wu_01a_0214_802.3bq_adhoc.pdf
 - 7-15% increase in short-link transceiver power if PBO is removed
 - Potential for simplifications in PBO without removal

Faster Startup

- WHAT IT IS: Decrease time allotted for startup
- WHY WAS 10GBASE-T THE WAY IT WAS:
 - 2-3 seconds was considered a tolerable "human time scale" for initial link
 - Training activity during startup drove peak power in early implementations
- WHY WE MIGHT RECONSIDER:
 - Faster baud rate & shorter channel may allow 2-4X startup improvement
 - Ease of use: experience has shown 10GBASE-T startup times are relatively long when testing reliability with multiple startups
- COSTS:
 - Small interoperability risk as slack for vendor-differentiation diminishes
 - Potential for small extra hardware cost to improve adaptation time
- POWER SAVINGS: NONE Small INCREASE relative to strawman
 - 40G adaptation circuitry can be run at same rate or slower than 10GBASE-T if startup time is unchanged, not scaled 4X

Backchannel for THP update

- WHAT IT IS: Adapt the equalization on the fly based on the receiver's state
- WHY WAS 10GBASE-T THE WAY IT WAS: Variability during link up of 10GBASE-T MDI-to-MDI channel did not require it
- WHY WE MIGHT RECONSIDER:
 - Enables deep notches for narrowband interference, shown effective in 10G
 - Eliminates a need for "fast retrain" interrupting data flow
 - BUT is this a problem with a shielded channel?
 - ON THE OTHER HAND What about noise from the host PCB?
 - e.g., use in WAPs?
- COSTS:
 - Change in PCS framing to add back channel, small increase in bit rate
 - Small increase in complexity and risk in interoperability
- POWER SAVINGS: None significant, may cost minimal power for computing updates

FEC to cover uncoded bits

- WHAT IT IS: Change or add a coding layer to cover all bits in the PCS framing
- WHY WAS 10GBASE-T THE WAY IT WAS: Performance in stationary (non-impulsive) interference was slightly better with set-partitioning
- WHY WE MIGHT RECONSIDER:
 - Performance: Experience shows bit errors are often on uncoded bits
 - 40GBASE-T noise is likely host-electronic-noise dominated, which is often impulsive
 - Cost: Potential relaxation of MDI return loss & front end requirements

COSTS:

- Change in PCS framing to accommodate either code layer or coding change, possibly with a small increase in line rate
- Minimal but nonzero increase in complexity or risk in interoperability

POWER SAVINGS:

- Reduction in AFE clip levels by x dB could save $100*(1-2^{-x/6.02})$ % of AFE receiver power, e.g., 3dB = 29% savings in AFE RX power

Negotiated Patch Cord Operational Mode: "Direct Attach Mode"

- WHAT IT IS: Include Negotiation of link-length in startup
- WHY WAS 10GBASE-T THE WAY IT WAS:
 - "10GBASE-T Short reach test mode"
 - Confusion over possible multiple PHY types ('10GBASE-TSR vs 10GBASE-T?)
 - Minimal power savings vs. Single-ended determination
 - Switch-to-server market was in early stages of segmentation
- WHY WE MIGHT RECONSIDER:
 - Switch-to-server market has segmented much more
 - Differentiated switch and server solutions for within-rack connections?
 - Power and port-counts in within-rack applications are more critical
- COSTS: Potential market confusion of 30m vs. within-rack 40GBASE-T
- POWER SAVINGS: Vary substantially by vendor architecture
 - From 10% to 50% relative to power at 30 meters
 - Much overlap with existing power savings approaches in multiple vendors
 - Engineered architectures (e.g., ToR) should be able to realize the power benefit without standards changes
 - Most savings for this are in receiver signal processing only the PBO savings needs communication, unless an alternate line encoding is envisioned (is this even in our scope?)

Thoughts for Discussion

- Remove PBO? PROBABLY NOT
 - Saves power, probably don't remove, consider simplification
 - CAN BE DONE LATER, BUT CONSIDER PROPOSALS
- Faster Startup PROBABLY NOT
 - Costs small power, don't consider unless a driver emerges
- Backchannel for THP update PROBABLY NOT
 - Unlikely to have a need, depends on how confident we are in channel shielding & host noise (e.g., what about use in WAPs?)
- FEC for Uncoded Bits MAYBE
 - SOLICIT CONTRIBUTION & PROPOSALS, potential for power savings,
 MDI RL relaxation, ease of host PCB layout
- Negotiated Patch Cord Operational Mode MAYBE
 - Need to determine what benefits can't be achieved without making this formal – otherwise realizing benefits of power savings on direct-attach links is more of a marketing problem

THANK YOU!