Channel Cost Analysis Duplex vs. Parallel Optics

Rick Pimpinella, Brett Lane, Jose Castro Panduit Labs, Panduit Corp.

Next-gen 200 & 400 Gb/s PHYs over Fewer MMF Pairs Geneva, January 2018

Double Link Channels

Relative Costs of Structured Cabling Components

– Relative Costs = material and labor

PARALLEL OPTICS

Pre-term Cabling	OM4
Termination	0.65 Y
Per meter adder	0.81 Z

Optical Channel Relative Component Costs

- Double Link Channel

Fixed components

• Cable termination =

2 · (Number of links) · (Relative cost) · (Number of fibers used ÷ Total no. of fibers in cable)

• Patch cords =

(Number of patch cords) · (Relative cost)

• Cassettes/FAPs =

(Number of links) · 2 · (Relative cost) · (Number of ports used ÷ Total no. of ports)

Variable channel cost

• Cable cost =

(Length in m) · (Relative cable cost per m) · (Number of fibers used ÷ Total no. of fibers in cable)

Relative Cost of 200Gb/s Transceivers

- Based on estimated cost of 10GBASE-SR SFP+ transceiver = M

10GBASE-SR data was estimated by reviewing publicly available cost information for components of compliant implementations. Readers of this slide should make their own cost estimates.

PARALLEL OPTICS

200GBASE-SR4 relative cost multiplier = n

• Relative cost of 200GBASE-SR4 = $n \cdot M$

DUPLEX FIBERS

200G SWDM relative cost multiplier = δ

- Relative cost of 200G SWDM = $(n \cdot M) \cdot \delta$
- Assumed $1.5 < \delta < 2.0$

12-Fiber Double Link Channel Cost Comparison - 4 unused dark fibers

STRUCTURED CABLING:	Parallel Cabling	Duplex Cabling
Fiber Type =	OM4	OM5
Cable fiber count =	12	12
No. of used fibers =	12	2
No. of channel links =	2	2
No. of patch cords =	3	3

	Normalized Standard Costs	
	Material + Labor	
Cable Termination =	0.65 Y	1.0 Y
Per meter adder =	0.81 Z	1.0 Z
Adapter panel or Cassette =	0.51 W	1.0 W
Patch Cord =	1.0 <i>X</i>	0.25 X

Panduit Fiber Solutions

Dark Fiber Migration Cassettes

- Run (3) 8-fiber SR4 links over 2 existing 12F cables
- Ensure 100% utilization of existing 12F cable plant
- Opticom and HD Flex form factors

Figure 3a: Front and Rear Panels (4x6)

receive from trunk 'B'

Figure 3: Front and Rear Panels (2x3)

8-Fiber Double Link Channel Cost Comparison

1.0 X

Patch Cord =

0.25*X*

infrastructure for a connected world

Relative Cost Benefit for 200G SWMD4 Double Link - 4 unused dark fibers

INOCIONED CADEINO.	i aranci cabinig	Duplex Cabing
Fiber Type =	OM4	OM5
Cable fiber count =	12	12
No. of used fibers =	12	2
No. of channel links =	2	2
No. of patch cords =	3	3

	Normalized Standard Costs	
	Material + Labor	
Cable Termination =	0.65 Y	1.0 <i>_Y</i>
Per meter adder =	0.81 Z	1.0 Z
Adapter panel or Cassette =	0.51 W	1.0 W
Patch Cord =	1.0 <i>X</i>	0.25 X

Relative Cost for 8-fiber Channel, *n* = 4, 5, & 6

Varying 200GBASE-SR4 cost multipliers for a double link channel

Relative Channel Cost for $\delta = 1.5, 1.75, \& 2$

Varying 200G SWDM cost multipliers for a double link channel, n = 4

Conclusions

- The cost of a MMF channel is dominated by the cost of the transceivers
 - Exactly analogous to the cost of single-mode vs. multimode channels
 - Single-mode fiber is lower cost than multimode fiber, and only utilizes a single duplex fiber pair
 - A 200GBASE-SR1.4 Xcvr will likely cost more than a 200GBASE-SR4 Xcvr
 - 200GBASE-SR4 (802.3cd) will likely be shipped in volume by the time 200GBASE-SR1.4 is standardized
 - 200GBASE-SR1.4 will not likely meet the CSD requirement for broad market potential (cost rules!)
- A 4- λ solution requires significantly higher VCSEL output power than SR4 for same reach
- Parallel optics provides an upgrade path from 10GBASE-SR duplex to:
 - 40 Gb/s over 4 fiber pairs
 - 25 Gbps duplex to 100 Gbps over 4 fiber pairs
 - 50 Gbps duplex to 200 Gbps over 4 fiber pairs
 - 100 Gbps duplex to 400Gbps over 4 fibers pairs
 - Future 200 Gbps duplex to 800 Gbps over 4 fiber pairs
- Parallel optics is widely deployed and utilizes standardized structure cabling
 - A 4-wavelength 200 Gbps solution does not support breakout
 - 200 Gbps requiring 4 wavelengths should move to a MSA

