## Proposal for a 100BASE-T1L PHY using PAM-3 8b6T

Brian Murray

## Proposal for 100BASE-T1L PHY Encoding

-PAM3 modulation at $80 \mathrm{MSym} / \mathrm{s}$ using 8b6T coding in conjunction with an $8 \mathrm{~N} / 8 \mathrm{~N}+1$ block code and with a low latency mode and a burst error protection mode

- Using the list of non-negative disparity codewords in ctl_data_code_groups_07152024
- This file has 256 lines and each line has 7 entries.
- The first entry is the 8-bit binary selection
- The remaining 6 entries provide the ternary values for the code-group
- The control of running disparity on the transmit side as described in slide 3
- The low latency mode using a 16B/17B block code as described in slide 4
- The burst error protection mode using a 64B/65B block code and a RS (128, 122, 3, 8) FEC code as described in slide 5
- The sequence of transmit bits and symbols is constructed as described in slides 3 to 6


## Control of Running Disparity

- The running disparity (RD) at the transmitter is controlled as follows
- Each 8-bit value from the encoder is associated with a 6-tuple with non-negative disparity
- If the 8-bit value from the encoder is associated with a 6-tuple with zero disparity, then the 6-tuple is transmitted as is
- If the 8-bit value from the encoder is associated with a 6-tuple with positive disparity, then the following rules apply
- If RD is negative, then the 6-tuple associated with the 8-bit value from the encoder is transmitted as is
- If RD is positive, then the 6-tuple associated with the 8 -bit value from the encoder is negated before transmission
- If RD is zero, then a pseudo random Boolean value derived from the scrambler determines whether to negate the 6-tuple before transmission
- RD is recomputed after transmission of each 6-tuple


## Low Latency Mode 100BASE-T1L PHY

## Use PAM-3 modulation with an 8b6T code at $80 \mathrm{MSym} / \mathrm{s}$

- Use an $8 N / 8 N+1$ block code with $N=2$ : a 16B/17B block code
- With L = 15 and a data block size of $15 \times 16=240$ bits
- With $L=15$ and $1 \times$ OAM bit we have $15 \times 17+1=256$ bits after the block code
- Transmitted as $32 \times 8$ b6T symbols
- The symbol rate is $(256 / 240) \times(6 / 8) \times 100=80 \mathrm{MSym} / \mathrm{s}$


## Burst Error Protection Mode 100BASE-T1L PHY

-Use PAM-3 modulation with an 8b6T code at $80 \mathrm{MSym} / \mathrm{s}$

- Use an $8 \mathrm{~N} / 8 \mathrm{~N}+1$ block code with $\mathrm{N}=8$ : a $64 \mathrm{~B} / 65 \mathrm{~B}$ block code
- Use a Reed Solomon FEC code over a Galois Field GF( $2^{8}$ ): RS( $\left.128,122,3,8\right)$
- With 3 correctable symbols for 225 ns of burst error protection
- The details of RS FEC is described on slide 5 of Tingting_3dg_02_16_07_2024
- With $L=15$ and a data block size of $15 \times 64=960$ bits and thus a block length of $9.6 \mu \mathrm{~s}$
- With $L=15$ and $1 \times$ OAM bit we have $15 \times 65+1=122 \times 8=976$ bits after the block code
- And a total RS block size of $128 \times 8=1024$ bits
- Transmitted as $128 \times 8 \mathrm{~b} 6 \mathrm{~T}$ symbols
- The symbol rate is $(1024 / 960) \times(6 / 8) \times 100=80 \mathrm{MSym} / \mathrm{s}$


## Block Diagram of Transmit Path for each Mode


*The scrambler and OAM details to be defined

