
Optimize FOM Reduction
COM Commit Request Number 4p8_6

Adam Gregory, Samtec

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 1

Purpose

• Reduce the size of the optimize_fom function.

• Maintain the same functionality.

• The optimize_fom function is 1400 lines and has become difficult to update since it is
massive, and deciphering the logic paths requires a large cognitive load. Now that COM is in
a repository where many people can collaborate, the likelihood of code conflicts and errors
in optimize_fom is almost certain.

• This function is a constant source of updates, so it is important to contain the expansion
before active collaboration ramps up.
• In the last 4 years, it grew from 700 lines to 1400 lines.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 2

Summary
• This proposal reduces the number of lines to from 1400 to 400 by sending logical blocks into new

subfunctions.
• Also reduces the number of variables in the workspace from around 180 to 60.

• At this point, the 23 new subfunction names have the prefix “OptFom_” to easily identify them
• The majority of these subfunctions would have no use outside of optimize_fom, but it is

possible that some could rebranded for general purpose.

• Over 30 test cases were written to validate this update. Each case gives identical output to the
version of COM without the changes.
• Identical means that every field in the output Result struct returns true for “isequal”
• The test cases were developed with the strategy of hitting all possible conditions within

optimize_fom. There is almost 100% code coverage within optimize_fom and the new
subfunctions.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 3

Optimize FOM Flowchart

• The basic goal is to make optimize_fom look
something like the pseudo-code shown here.

• This is an oversimplification, but it expresses
the overall arc of the code.

• It turns optimize_fom into a facilitator and
pushes the actual technical work into
manageable subfunctions.

• Three new structures are introduced to assist
with organization and sending data between
functions
• BEST: container to hold the best EQ data
• THIS: container to hold the EQ data for the

current loop
• SETTINGS: container to hold settings are

independent of the EQ loop

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 4

List of subfunctions created (Pre-Loop)

1. OptFom_Initialize_Loop_Struct: Initialize the container that holds all the settings for the
current loop

2. OptFom_Build_TXFFE: dynamically construct the TxFFE sweep settings and tap indices

3. OptFom_Calc_Hr.m: return Hr (combined effect of all filter gains)

4. OptFom_FD_or_TD_Fields.m: determine which fields to use in chdata for FD vs. TD Mode

5. OPTFom_Calculate_Settings: Build a container that holds miscellaneous settings that are
independent of the EQ Loops

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 5

List of subfunctions created (Main functions In-Loop)

6. OptFom_Compute_CTLE.m: return total CTLE gain and modify chdata impulse response to
include the CTLE

7. OptFom_Compute_TXFFE.m: calculate pulse response with TXFFE applied

8. OptFom_Find_Sample_Point.m: return cursor_i and peak_i (sample point and peak point)

9. OptFom_Compute_DFE.m: calculate all DFE taps, floating taps, and tail taps

10. OptFom_Compute_RxFFE: culcate RxFFE taps and apply to pulse response. Also returns
PSD_results, MMSE_Results, and FOM when MMSE is enabled.

11. OptFom_Calc_Noise: Calculate all the noise parameters that are needed (h_J, sigma_TX,
ISI_N, sigma_N, total_noise_rms)

12. OptFom_Calc_FOM.m: calculate FOM for a particular loop (not used when RxFFE with
MMSE is enabled)

13. OptFom_Update_Best_Setttings: update BEST settings when current FOM > Best FOM

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 6

List of subfunctions created (Auxiliary functions In-Loop)

14. OptFom_Local_Search.m: run the LOCAL SEARCH routine (determine if this EQ loop
should be skipped)

15. OptFom_Setup_Sampler_Sweep.m: logic to setup the sampler point sweep
(sample_adjustment in the config spreadsheet)

16. OptFom_Itick_BoxSearch: handle box search itick sweep (not currently enabled but is in
optimize_fom as placeholder)

17. OptFom_Itick_LocalSearch: handle Local Seach for Itick sweep (only when TS Search
Mode = Middle)

18. OptFom_Set_Best_Itick: set the best itick settings for the current sweep (used in Itick
Local Search)

19. OptFom_Calc_Noise_XC.m: calculate Noise_XC (obsolete)

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 7

List of subfunctions created (Post-Loop)

20. OptFom_Update_Best_Settings_EQ_Failed: update BEST settings after EQ optimization for
the special case where no valid FOM was found

21. OptFom_Update_BEST_Post_Optimize: update BEST settings for fields that are only
updated after EQ optimization loop

22. OptFom_Plot_Best_Results.m: debug plot at the very end of optimize_fom

23. OptFom_Create_Output: create final output structure

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 8

Change comparison

• This URL shows the diffs in optimize_fom:
• Compare main vs. Reduce Optimize FOM
• Scroll to the bottom to see “src/optimize_fom.m”
• It will say “This diff is collapsed. Click to expand

it”
• Click that to see all the diffs

• In general, the diffs look as shown on the image to the
right
• A bunch of lines pushed into subfunctions

• Due to the nature of this refactoring, it is difficult to
visually observe the changes.

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 9

https://opensource.ieee.org/802-com/com_code/-/compare/main...Optimize_FOM_Reduce?from_project_id=2361&page=2&straight=false&w=1

Changes to config

• Changes to config
• None

• Changes to output
• None

• Download beta test code
• Beta Test: Optimize FOM Reduction

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 10

https://opensource.ieee.org/802-com/com_code/-/raw/Optimize_FOM_Reduce/release/com_ieee8023_4p9p0_beta_Optimize_Fom_Reduce_01.m?inline=false

Running this Update using the GIT repository
• You can also run this update by pulling the git repository from the 802-COM website
• Run this command from git bash:

• git checkout Optimize_FOM_Reduce
• This will switch your working area to the branch which contains all the reduction to optimize_fom

• You can tell it has updated because you will have all the OptFom_* functions in src\ folder
• Run this command to switch back to main branch:

• git checkout main
• You can run tests on your own to validate the update. Something like this:

• While in main branch:
• Ref_Result = com_ieee8023_(…….)

• While in Optimize_FOM_Reduce branch:
• New_Result = com_ieee8023_(…….)

• Then run the compare function:
• Management.compare_results(Ref_Result,New_Result);
• Note: The compare_results function only takes scalar structs. So if your COM result output

has length > 1:
• Management.compare_results(Ref_Result{1},New_Result{1});

• It will say “Results are equal” or it will give a list of which fields within the result struct are not
equal and the numerical difference (if applicable)

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 11

Screenshot of running the compare test on many cases

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 12

	Slide 1: Optimize FOM Reduction COM Commit Request Number 4p8_6
	Slide 2: Purpose
	Slide 3: Summary
	Slide 4: Optimize FOM Flowchart
	Slide 5: List of subfunctions created (Pre-Loop)
	Slide 6: List of subfunctions created (Main functions In-Loop)
	Slide 7: List of subfunctions created (Auxiliary functions In-Loop)
	Slide 8: List of subfunctions created (Post-Loop)
	Slide 9: Change comparison
	Slide 10: Changes to config
	Slide 11: Running this Update using the GIT repository
	Slide 12: Screenshot of running the compare test on many cases

