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Purpose

• Reduce the size of the optimize_fom function.

• Maintain the same functionality.

• The optimize_fom function is 1400 lines and has become difficult to update since it is 
massive, and deciphering the logic paths requires a large cognitive load.  Now that COM is in 
a repository where many people can collaborate, the likelihood of code conflicts and errors 
in optimize_fom is almost certain.

• This function is a constant source of updates, so it is important to contain the expansion 
before active collaboration ramps up.
• In the last 4 years, it grew from 700 lines to 1400 lines.
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Summary
• This proposal reduces the number of lines to from 1400 to 400 by sending logical blocks into new 

subfunctions.
• Also reduces the number of variables in the workspace from around 180 to 60.

• At this point, the 23 new subfunction names have the prefix “OptFom_” to easily identify them
• The majority of these subfunctions would have no use outside of optimize_fom, but it is 

possible that some could rebranded for general purpose.

• Over 30 test cases were written to validate this update.  Each case gives identical output to the 
version of COM without the changes.
• Identical means that every field in the output Result struct returns true for “isequal”
• The test cases were developed with the strategy of hitting all possible conditions within 

optimize_fom.  There is almost 100% code coverage within optimize_fom and the new 
subfunctions.
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Optimize FOM Flowchart

• The basic goal is to make optimize_fom look 
something like the  pseudo-code shown here.

• This is an oversimplification, but it expresses 
the overall arc of the code.

• It turns optimize_fom into a facilitator and 
pushes the actual technical work into 
manageable subfunctions.

• Three new structures are introduced to assist 
with organization and sending data between 
functions
• BEST:  container to hold the best EQ data
• THIS:  container to hold the EQ data for the 

current loop
• SETTINGS:  container to hold settings are 

independent of the EQ loop

IEEE 802.3 Channel Operating Margin (COM) Open Source Project 4



List of subfunctions created (Pre-Loop)

1. OptFom_Initialize_Loop_Struct:  Initialize the container that holds all the settings for the 
current loop

2. OptFom_Build_TXFFE:  dynamically construct the TxFFE sweep settings and tap indices

3. OptFom_Calc_Hr.m:  return Hr (combined effect of all filter gains)

4. OptFom_FD_or_TD_Fields.m:  determine which fields to use in chdata for FD vs. TD Mode

5. OPTFom_Calculate_Settings:  Build a container that holds miscellaneous settings that are 
independent of the EQ Loops
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List of subfunctions created (Main functions In-Loop)

6. OptFom_Compute_CTLE.m:  return total CTLE gain and modify chdata impulse response to 
include the CTLE

7. OptFom_Compute_TXFFE.m:  calculate pulse response with TXFFE applied

8. OptFom_Find_Sample_Point.m:  return cursor_i and peak_i (sample point and peak point)

9. OptFom_Compute_DFE.m:  calculate all DFE taps, floating taps, and tail taps

10. OptFom_Compute_RxFFE:  culcate RxFFE taps and apply to pulse response.  Also returns 
PSD_results, MMSE_Results, and FOM when MMSE is enabled.

11. OptFom_Calc_Noise:  Calculate all the noise parameters that are needed (h_J, sigma_TX, 
ISI_N, sigma_N, total_noise_rms)

12. OptFom_Calc_FOM.m:  calculate FOM for a particular loop (not used when RxFFE with 
MMSE is enabled)

13. OptFom_Update_Best_Setttings:  update BEST settings when current FOM > Best FOM
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List of subfunctions created (Auxiliary functions In-Loop)

14. OptFom_Local_Search.m:  run the LOCAL SEARCH routine (determine if this EQ loop 
should be skipped)

15. OptFom_Setup_Sampler_Sweep.m:  logic to setup the sampler point sweep 
(sample_adjustment in the config spreadsheet)

16. OptFom_Itick_BoxSearch:  handle box search itick sweep (not currently enabled but is in 
optimize_fom as placeholder)

17. OptFom_Itick_LocalSearch:  handle Local Seach for Itick sweep (only when TS Search 
Mode = Middle)

18. OptFom_Set_Best_Itick:  set the best itick settings for the current sweep (used in Itick 
Local Search)

19. OptFom_Calc_Noise_XC.m:  calculate Noise_XC (obsolete)
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List of subfunctions created (Post-Loop)

20. OptFom_Update_Best_Settings_EQ_Failed:  update BEST settings after EQ optimization for 
the special case where no valid FOM was found

21. OptFom_Update_BEST_Post_Optimize:  update BEST settings for fields that are only 
updated after EQ optimization loop

22. OptFom_Plot_Best_Results.m:  debug plot at the very end of optimize_fom

23. OptFom_Create_Output:  create final output structure
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Change comparison

• This URL shows the diffs in optimize_fom:
• Compare main vs. Reduce Optimize FOM
• Scroll to the bottom to see “src/optimize_fom.m”
• It will say “This diff is collapsed. Click to expand 

it”
• Click that to see all the diffs

• In general, the diffs look as shown on the image to the 
right
• A bunch of lines pushed into subfunctions

• Due to the nature of this refactoring, it is difficult to 
visually observe the changes.
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Changes to config

• Changes to config
• None

• Changes to output
•  None

• Download beta test code
• Beta Test:  Optimize FOM Reduction
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https://opensource.ieee.org/802-com/com_code/-/raw/Optimize_FOM_Reduce/release/com_ieee8023_4p9p0_beta_Optimize_Fom_Reduce_01.m?inline=false


Running this Update using the GIT repository
• You can also run this update by pulling the git repository from the 802-COM website
• Run this command from git bash:

• git checkout Optimize_FOM_Reduce
• This will switch your working area to the branch which contains all the reduction to optimize_fom

• You can tell it has updated because you will have all the OptFom_* functions in src\ folder
• Run this command to switch back to main branch:

• git checkout main
• You can run tests on your own to validate the update.  Something like this:

• While in main branch:
• Ref_Result = com_ieee8023_(…….)

• While in Optimize_FOM_Reduce branch:
• New_Result = com_ieee8023_(…….)

• Then run the compare function:
• Management.compare_results(Ref_Result,New_Result);
• Note:  The compare_results function only takes scalar structs.  So if your COM result output 

has length > 1:
• Management.compare_results(Ref_Result{1},New_Result{1});

• It will say “Results are equal” or it will give a list of which fields within the result struct are not 
equal and the numerical difference (if applicable)
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Screenshot of running the compare test on many cases
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