IEEE 802.3 Call for interest (CFI)

Extended reaches single Twisted Pair

Supporters

- Ludwig Winkel, Siemens AG (Industrial Automation)
- Klaus Wächter, Siemens AG (Building automation)
- Chris DiMinico, (Cable)
- Mick McCarthy, Analog
- Matthias Fritsche, HARTING Electronics (Industrial Automation)
- Bernd Horrmeyer, Phoenix-Contact (Industrial Automation)
- Frank Schewe, Phoenix-Contact (Industrial Automation)
- Stephan Kehrer, Hirschmann (Industrial Automation)
- Oliver Kleineberg, Hirschmann (Industrial Automation)
- David Brandt, Rockwell Automation (Industrial Automation)
- Claude Gauthier, OmniPhy (PHY vendor)
- David Hoglund, Johnson Controls (Building automation)
- Laura Schweitz, Turck (Industrial Automation)
- Maris Graube, Relcom Inc. (Industrial Automation)
- Bob Moskowitz, Consultant (Building automation)
- Bob Wagner, Panduit (Cable)
- Jordon Woods, Innovasic, Inc. (Semiconductor Vendor)
- Mohammad S. Ahmed tyco electronics, (Cable)
- Alan Flatman, LAN Technologies (Cable)
- Hans Lackner, QoSCom (Cable)
- Rubén Pérez de Aranda, KDPOF (PHY vendor)

Motivation and Goals

1. Current Industrial Communications:

- Up to 1200m on a single copper pair
- Deterministic, low jitter, low latency communications
- Operating in an impulsive EMI environment
- Rates of 32 kb/s
- Low power (50 mW) PHYs
- Compatible with intrinsically safe line powering

2. Future Industrial needs:

- all of the above, plus:
 - Symmetric rates of 10 Mb/s or greater
 - Compatibility with Ethernet networks

Motivation

To provide a higher bandwidth Ethernet single pair option for current industrial communication networks.

- 2. CFI to initiate a Study group to define parameter for extended reach of 10M, 100M and 1G one pair PHYs to serve industrial Ethernet needs.
- 3. This work could leverage expertise from 802.3bp, 802.3bw, and 802.3bu.

CFI Announcement Text

- Title: "Extended reaches single Twisted Pair"
- This is a call for interest to initiate a Study Group to explore Ethernet solutions for industrial applications over up to 1200m of single twisted pair with data rates of 10 Mbit/s or greater.
- The targeted solutions would support the transition from existing industrial communication networks to an Ethernet network simplifying operations and lowering costs.
- These solutions would be compatible with the needs of real-time control networks and line power.
- It is envisioned that the solution developed will also support Internet of Things (IoT) initiatives.

Examples of application areas

Lead positions

- SG Chair?
- Editor?
- Recording secretary ?

CFI Objectives

- To gauge the interest in starting a study group to investigate parameters that extend the reaches of single pair Ethernet PHYs, and explore reach up to 1000m at a lower data rate, optimized for industrial applications, Building automation but not limited to these.
- This Meeting will **NOT**:
 - Fully explore the problem
 - Choose any one solution
 - Debate strengths and weaknesses of solutions
 - Create a PAR or CSD
 - Create a standard or specification
- Anyone in the room may speak / vote
- RESPECT... give it, get it.

Agenda

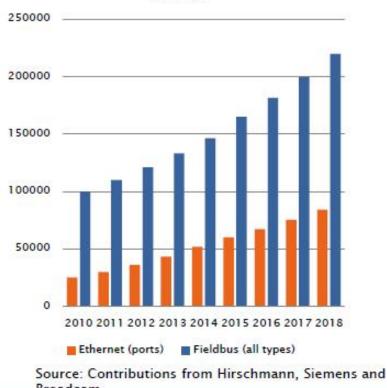
- Overview
- The needs
 - Reach Extension of Single Pair Ethernet PHYs
 - There is a need for extended reach, up to 1000 m
- Technical Viability
 - 10 Mb/s Single Twisted Pair PHY
- Why now?
- Q&A
- Straw Polls

Overview: Reach Extension of Single Pair Ethernet PHYs

- Single Pair UTP PHYs (1000BASE-T1 and 100BASE-T1) are attractive PHYs for industrial networking.
 - The dominant driving market for the past 802.3 single pair projects was in-car automotive and their associated shorter reach (trade-off EMC and reach).
 - Industrial Networking is the other referenced large market for the same technologies, and requires longer reach.
- Single Twisted Pair Fast Ethernet and Gigabit Ethernet PHYs had been broadly supported by industrial networking representatives in 802.3, and by the affiliated companies.
- Industrial networking
 - Current industrial protocols that adopts Ethernet technology supports at least 100 m.
 - uses less than four twisted pairs in many cases.
 - Leverage single pair PHYs in standards development, explore extended reach of at least 100 m.
 - Current industrial buses support distances up to 1000 meters and at lower data rates over a single twisted pair.
 - Sensors and actuators require higher bandwidth in emerging applications, like machine vision, motion control, process control, etc.
 - Maintenance is easier if shop floor and control floor using the same base technology

Overview – Ethernet's Growing Deployment

Introduction


- Ethernet use in industrial and commercial market is growing.
- About a dozen purposeful industrial protocols currently serve these networking needs

Forecast

- Strong desire and need for converged networks.
- Expect both conversion from fieldbus and growth of Ethernet over time.

Industrial Bus

Broadcom

Source: Contributions from Hirschmann, Siemens and Broadcom

Why the 1000 meter Reach?

- Installed cables for existing fieldbuses are often good quality single twisted pair cable, both unshielded but mostly shielded (at least outside US).
- Fast Ethernet (and some Gigabit) adoption in the many of the dominant Industrial Ethernet flavors. These (grossly) adhere to IEEE 802.3 standards in its use.
- But the traditional industrial buses support longer reach (BW-distance trade-off) at lower data rates (a few Mb/s down to a few Kb/s).
- 1000 meter reach at lower than 100 Mbps rate (e.g. 10 Mbps), would:
 - Enable new higher bandwidth applications on modern sensors and actuators, e.g. machine vision, faster control loop, central versus distributed processing, etc.
 - Provide higher bandwidth connections to existing installed cable plant, and continue to serve industrial network distances.

TECHNICAL FEASIBILITY

- Reach Extensions of 100BASE-T1
 - Automotive EMC takes more than 10 dB away from the dynamic range
 - Both 1000BASE-T1 and 100BASE-T1 should be able to make use of the margin.
 - 100BASE-T1 (at lower frequency or lower EMC) has the potential to go beyond 100m
 - EMC (radiated and susceptibility) trade off with distance and/or rate.
- It exists already at least one proprietary solution

Longer reach at lower rate

Typical Installed Cable Characteristics

DE Parameter ESIGE	Limit
Impedance	100Ω
	with $f = 3 100 \text{ MHz}$
Optional capacity	≤30 pF/m
Loop resistance	≤110Ω/km
Wire diameter	>0,64 mm
Wire CSA	>0,34 mm ²
L/R proportional for intrinsic safety applications	≤30μH/Ω

Technical Viability Summary

- 1000BASE-T1 and 100BASE-T1 could reach up to 100 meters through use of new channel definition and reduced EMC requirements (compared to automotive use).
- Extended reach up to 1000 m could leverage existing PHYs by trading lower speed for longer reach.

Why Now?

- 1000BASE-T1 and 100BASE-T1 technical baseline adopted, and technical stability anticipated.
- Time to consider extended reach of at least 1000m on these PHYs.
 - To address the needs of industrial Ethernet on its own merits
 - Leverage one pair PHY standardization and also its supplier
 R&D efficiency (design, development, validation, etc.).
- Industrial control and networking requested standardization nearly complete.
 - Expect IEEE 802.3br IET, and IEEE 802.1 TSN, etc, to help converge diverse industrial standards toward mainstream IEEE 802.3 networks.

O&A

Panelists:

- Ludwig Winkel
- Xy (Moderator)
- ...

STRAW POLLS

Should an 802.3 Study Group be formed for

Longer reach?

People in the Room	Dot 3 Voters Only
Y:	Y:
N:	N:
A:	A:

STRAW POLLS

Participation

 I would participate in a "Reach extensions of Single Pair Ethernet PHYs" study group in IEEE 802.3

• Tally: _____

- My company would support participation in a "Reach extensions of Single Pair Ethernet PHYs" study group
- Tally: _____

Future Work

- Ask 802.3 at Thursday's closing meeting to form a "Reach extensions of Single Pair Ethernet PHYs" study group
- If approved:
 - 802 EC informed on Friday of formation of the study group.
 - First study group meeting would be during next IEEE 802.3 interim meeting.