10Mb/s Extended Reach Single Twisted Pair Ethernet PHY Call for Interest

IEEE 802.3 Ethernet Working Group

CFI Panel Members

Chair and Presenter:

Supporters and experts for the Question and Answer session

Supporters - Page 1

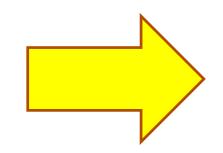
Supporters - Page 2

CFI Objective

• To gauge the interest in starting a Study Group for:

10Mb/s Extended Reach Single Twisted Pair Ethernet PHY

- This meeting will NOT:
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose a solution
 - Create a PAR or 5 Criteria
 - Create a standard or specification


Agenda

- Industrial Networking Market Need
- Industrial Networking Solution Requirements
- Target Markets
- Market Potential
- Technical Feasibility
- CFI Proposal
- **Q&A**
- Straw Polls

Industrial Networking Market Need

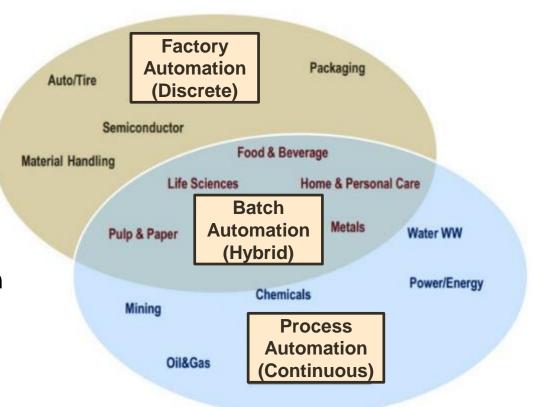
Vision

- Multidrop
 - RS-485
 - HART modem
 - CAN
 - Proprietary/custom
- Point-point
 - 4-20mA
 - HART modem
 - RS-232
 - Proprietary/custom
- New whitespace applications
 - Enabled through new capabilities

IEEE 802.3

Industrial Automation Landscape

Factory Automation


- Discrete units of output
- Rapid operations

Process Automation

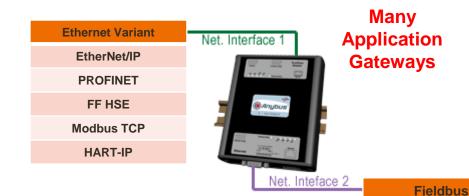
- Continuous output
- Expansive applications
- Often hazardous

Batch/Hybrid Automation


- Batch output
 - Combination of both continuous and discrete

Ethernet Conversion Gap in Industrial Networking

- Ethernet <u>is</u> propagating
- Desire to converge on one network type
- Non-Ethernet *fieldbuses* still required to complete communications to the edge
 - Challenges: Cost, reach, special environments


Ethernet Gap

Credit: Dr. Raimund Sommer, Endress + Hauser, ODVA Industry Conference, Oct. 2014.

Too Many Fieldbus Variants

- Big challenges for end users
 - Labor skills
 - Installation complexity
 - Maintenance complexity
 - Interoperation issues

Partial list...

Process	Discrete	
FOUNDATION Fieldbus H1	PROFIBUS DP	
PROFIBUS PA	DeviceNet	
HART	CANOpen	
	Modbus	
	CC-Link	
	INTERBUS	
	CompoNet	
	AS-Interface	
	IO-Link	

Cannot Meet New Application Needs: Higher Rates from the Edge

- IIoT, Big Data, and Analytics
 - High-speed data logging
 - Production details, equipment conditions, environment state, energy consumption,...
 - Optimization, maintenance, safety, compliance,...

- Embedded web servers
 - Installation and maintenance

- Video
 - Reduced footsteps
 - Safety
 - Product quality sensor
 - Security

Industrial Networking Solution Requirements:

Why 10Mb/s Extended Reach Single Twisted Pair Ethernet PHY?

Why Ethernet to the Edge?

- Single network paradigm
 - Leverages of economy of scale
 - Reduces complex gateways
 - More rapid commissioning
 - More rapid fault diagnosis and repair
- Larger pool of talent to install, manage and maintain

- Join & benefit from Ethernet Ecosystem
 - Protocols
 - Security
 - ..

Why 10Mb/s and Extended Reach?

- Common fieldbuses reach 400-5000m
 - 1200m believed to address most fieldbus applications
- Common fieldbuses have rates up to 12Mb/s
 - 10Mb/s addresses most fieldbus applications
 - Enables a standard MAC

Fieldbus	Longest Reach	Highest Rate
PROFIBUS DP	9.6kb/s @ 1200m	12Mb/s @ 100m
CANopen	10kb/s @ 5000m	1Mb/s @ 20m
Modbus RTU	100kb/s @ 1200m	2Mb/s @ 50m
CC-Link	156kb/s @ 1200m	10Mb/s @ 100m
HART	1200 baud @ 1524m (24AWG) 1200 baud @ 3048m (20AWG)	No enhanced rate
DeviceNet	125kb/s @ 500m	500kb/s @ 100m
ControlNet	5Mb/s @ 1000m	No enhanced rate
INTERBUS	500kb/s @ 400m	No enhanced rate
FOUNDATION H1	31.25kb/s @ 1900m	No enhanced rate
PROFIBUS PA	31.25kb/s @ 1900m	No enhanced rate

Why Single Twisted Pair?

Enhanced Cable

Reuse Value

- Large install base of similar cabling
 - Single Twisted Pair is most common – usually shielded
 - Certain cables are certified
- Desire to maximise cable reuse
 - Lengthy fieldbus cables are expensive to run (often in conduit)
 - End nodes are easier to replace
 - Similar efforts with 2.5G/5G
- Some devices require power over the same pair
 - Enhancement of PoDL for extended reach to be considered

Fieldbus	Cable Type	Cable Power
FOUNDATION H1	FF-844 specified	Yes
HART	Various	Yes
PROFIBUS PA	IEC 61158 Type A*	Yes
4-20mA	SP-50 instrumentation cable	Yes
CANopen	EIA-485*	Yes
Modbus RTU	EIA-485*	No
CC-Link	CC-Link, Ver.1.10 specified Shielded, 3- & 5-core	No
DeviceNet	ODVA DeviceNet specified (5-core, various classes)	Yes
ControlNet	RG-6/U Coaxial	No
INTERBUS	3 / 6 no. twisted pairs, various	Yes
PROFIBUS DP	IEC 61158 Type A (22AWG?)	No

Why Single Twisted Pair?

- Expected benefits:
 - Less complex to install
 - Lower cost
 - Smaller size & lower weight
- Benefits enable a large volume of small and cost-sensitive Factory Automation components to migrate to Ethernet
 - Previously un-networked discrete devices
 - Low end fieldbus devices

Why Limit this CFI to 10Mb/s?

- Preference for this CFI is to include one PHY development
 - Satisfies immediate pull from market addressing 'sweet spot'
 - Reduces complexity & minimises time to completion
- Future CFI(s) can consider efforts at different rates
 - Address certain applications that would benefit from higher rate (>10Mb/s), extended reach, single pair solutions
 - Distance of existing single pair standards not long enough for some use cases
 - NAMUR and Industry vendors body (APL) agree on <u>future</u> need for 100Mb/s
- Establishes credibility in Ethernet as true consolidated fieldbus replacement

Summary: Why 10Mb/s Extended Reach Single Twisted Pair Ethernet PHY?

- Desire to have one network type throughout facility/factory/plant
 - Alternative to <u>hugely</u> fragmented Fieldbus landscape using single pair
 - Single pair essential
 - Weight, cost, mechanical benefits
 - Ease of installation lower skilled labour force
 - Ease of maintenance
 - Availability of Ethernet knowledge and networking configuration
 - Lower Total Cost of Ownership
- Greater bandwidth required to support Industry 4.0 / Smart Factory / IIoT
 - Enabling new use cases with higher throughput, lower latency
 - Sensors running web servers!
 - Improved efficiencies
- Existing Ethernet standards not addressing needs

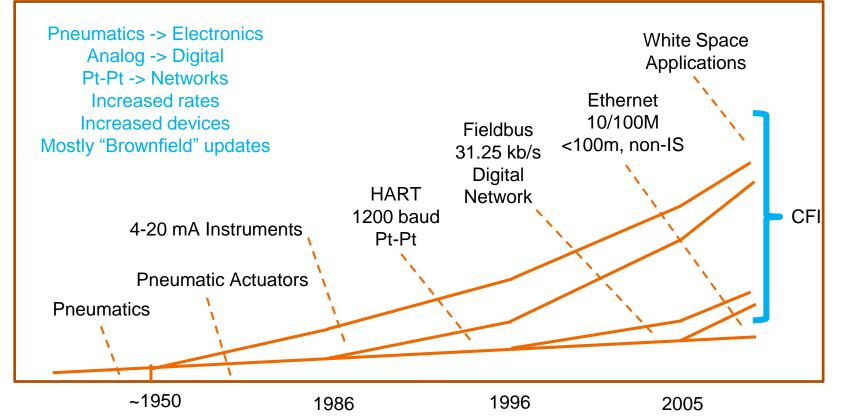
Target Markets

Potential Markets

Industrial Automation

- The dominant driving market for this CFI
- Landscape breakdown described previously:
 - Process Automation
 - Factory Automation
 - Hybrid
- Large market potential (i.e. port count)

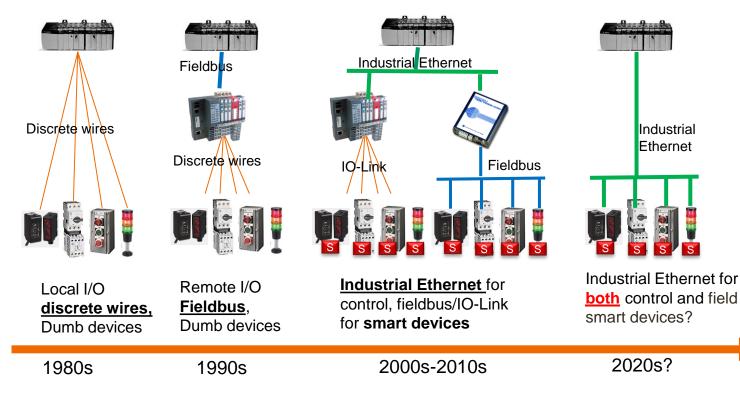
A 10Mb/s Extended Reach Single Twisted Pair Ethernet PHY anticipates significant leverage across other segments including:


- Building Automation
- Lighting Systems

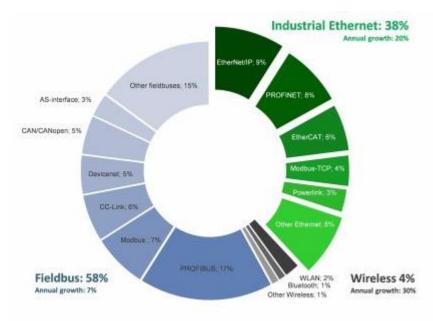
(Reference July 2014 IEEE 802 BoF "I Feel the Need... for Low Speed" (Carlson/Kennedy))

Markets Summary

- Process Automation
 - Sensors (flow, level, pressure, temp, ...), actuators, drive applications (closed loop)
 - Redundancy through ring topology
- Factory Automation
 - Sensors, HMI, motors, actuators
- Building Automation
 - Temperature, humidity, light, occupancy sensors
 - Mechanical actuators: HVAC, shades/blinds
 - Controllers, meters, access control


Process Automation Networking History, Trends & Growth

Process Automation Intrinsic Safety

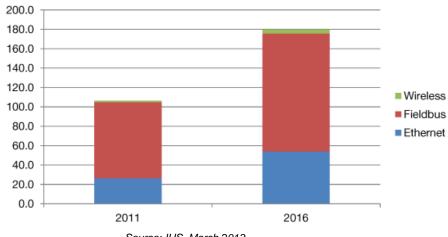

- Industrial Automation has stringent safety standards applied
 - Some safety and mission critical systems involved
- "Intrinsic safety (IS) is a protection technique for safe operation of electrical equipment in hazardous areas by limiting the energy, electrical and thermal, available for ignition" - Wikipedia
- Requirement within Industrial Process and Batch/Hybrid
- Certification is of the networked equipment not of the IEEE PHY
- The PHY should not <u>preclude</u> the design of IS networked equipment

Discrete Automation: Networking History & Trends

Market Potential

Current Industrial Network Share

Growth of networked nodes

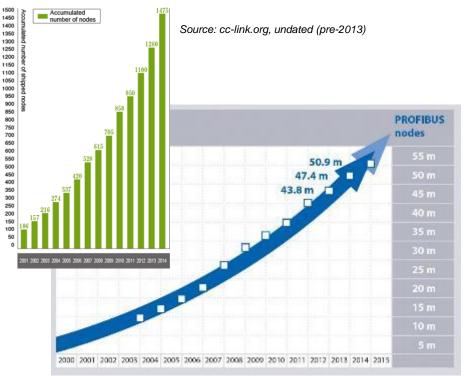

- Fieldbus (58%), 7% growth
- Ethernet (38%), 20% growth
- Limited wireless adoption
- Significant number of protocols
 - Ethernet protocols can share common hardware
 - Fieldbuses have unique hardware

Source: HMS Networks, March 2016

Industrial Networking Market Size - High

Fieldbus Fades as Ethernet Excels

Worldwide growth in industrial networking by technology 2011-2016 by millions of new node connections.

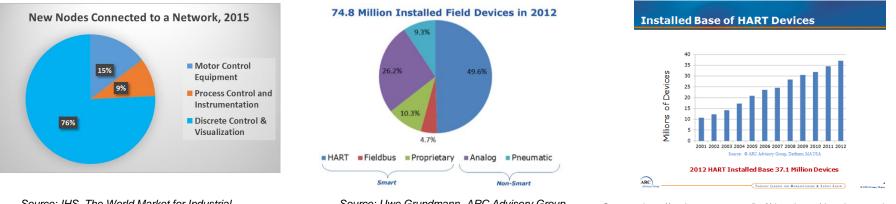


Source: IHS, March 2013

- IHS report also showing growth profile
- Some discrepancies with previous market share summaries
 - Earlier data (IHS 2013)
 - Projected lower Ethernet adoption
- Indicates
 - 55M new Ind. Ethernet ports/yr
 - 120M new Fieldbus ports/yr

Industrial Networking Market Size - Low

OIncrease of number of shipped nodes (Unit:10000 nodes)



Source: Profibus and Profinet International, April 2015

CC-Link

- Showing ~2.15M nodes/yr
- 6% market share (per HMS)
- Infers market of 36M ports/yr
- Profibus
 - 3.6M/yr Profibus DP
 - 800k/yr Profibus PA
 - 17% market share combined
 - Infers market of 26M ports/yr

Industrial Networking Market Size – Process

Source: IHS, The World Market for Industrial Ethernet & Fieldbus Technologies – 2013 Edition Source: Uwe Grundmann, ARC Advisory Group, ARC Industry Forum, Tokyo 2015.

Source: http://en.hartcomm.org/hcf/developer/developer_mktpos.html

- Process Automation makes up 9% of overall market
- HART enjoys ~50% share of this subset
- Growing at 3M devices/yr
- Infers 68M devices/yr -> 136M ports/yr

Industrial Networking Market Size – Summary

- Converged data is challenging to align
 - Various reporting techniques
 - May or may not include analog only solutions
 - Varying vintage of information
 - May not fully capture recent growth trajectory of Ethernet
 - Potential biases of representative organisations
- Based on current solutions, mid-range estimate could suggest 80 100M ports/year – not including Building Automation!
- New enabling technology (CFI subject) can enable greater growth and enables additional whitespace applications

Technical Feasibility

Related Implementations

- Proprietary PHYs
 - Advanced Physical Layer (APL) prototype shown publically at Automation Fair and other venues
 - BroadR-Reach
- Relevant IEEE PHYs
 - 10PASS-TS
 - 10 Mb/s, 750 meters, single copper pair, variable rate
 - 2BASE-TL
 - 2 Mb/s, 2.7 km, full-duplex, voice-grade copper wiring, variable rate

CFI Proposal

High Level Summary

Clear demand for 10Mbps Extended Reach Single Pair Ethernet

- Consolidate fragmented fieldbus market to unified Ethernet-based solution
- Convert existing/legacy analog links to modern higher speed digital systems
- Enable Industrial IoT applications e.g. big data analytics, smart sensors, streaming video
- Single pair for ease of install and enabling cable reuse

Large market potential for 10Mbps extended reach single pair Ethernet

- 80M+/yr for industrial automation
- Xxx for building automation
- Xxx for other potential market segments
- Technical feasibility demonstrated
 - Advanced Physical Layer
 - BroadR-Reach over home access network

Why Now and Why in IEEE 802.3?

- The industry is requesting it
- It's Ethernet--- it belongs in IEEE 802.3
- IEEE802.3 is recognized as the international standard for Ethernet
- Responsible for Ethernet physical layers
- The effort should start now to meet the industry adoption timeline

10Mb/s Extended Reach Single Twisted Pair Ethernet PHY Q&A

15 Minutes

Straw Polls

Straw Poll

xxx Number of people in the room

___xx_ Individuals who would attend and contribute to a

10Mb/s Extended Reach Single Twisted Pair Ethernet PHY Study Group

___xx_ Companies that support the formation of a

10Mb/s Extended Reach Single Twisted Pair Ethernet PHY Study Group

Thank you!