

Standardization path for 50G/200G/400G ER PMD requirements

Yoshiaki Sone NTT IEEE802.3 Industry Connections NG-ECDC Ad hoc, San Antonio, November 2016

Overviews

Background

There are market needs s for

- 50GbE 40km
- 200GbE 40km/80km
- 400GbE 40km/80km

Technically, **50G 40km** and **200G 40km** come earlier.

Proposal of this presentation

- Among multiple requirement, start their standardization with 50GbE/200GbE 40km reach as the initial step.
- When starting, we should consider the commonality with 400GbE 40km which comes next.

Market need

Urgent needs for multiple rates, 50G, 200G and 400G extended reach PMD for 5G Mobile Backhaul Network

Bandwidth in 5G Mobile Backhaul Network

Optical transmission performance evaluation (sone_ecdc_01a_0716)

Reach extension of 400GBase-LR8 can be achieved with some of the following approaches

- 1) APD-receiver,
- 2) higher power EML
- 3) Stronger FEC

FEC options for extended reach 50G/200G/400GbE (wang_ecdc_01_0316)

There are several stronger HD-FEC options than KP4.

Technical difficulty differences between 200GbE and 400GbE

Technically 200GBase-ER4 is easier than 400GBase-ER8 as it is 4-lane solution. 200GbE commercial productions may come earlier than 400GbE.

Difficulty differences between 400GBase-ER8 and 200GBase-ER4

	400G-base ER8	200G-base ER4		
Number of lanes	8-lane	4-lane		
WDM-mux loss	3dB (8λ)	2dB (4λ)		
WDM-demux loss	3dB (8λ)	2dB (4λ)		
Worst-case dispersion	-203.3ps/nm - +37.5ps/nm	-113.4ps/nm - +37.5ps/nm		

Discussion steps for standardization

- Among 50G/200G/400G requirements, we can start with the 50G/200GbE 40km standardization that have relatively small technical hurdles.
- Keep in the mind that we must ensure the commonality with the following 400GbE 40km standardization.

Market requirements for ER PMD (50G, 200G, 400G.)

 \rightarrow derivations of 50G PAM4/lane solution have many aspects in common.

Example: Commonality between 200GbE and 400GbE

Given the reaches of 200GBase-LR4/400G-baseLR8 can be extended to 40km, 200GBase-ER4/400G-Base-ER8 can have much commonality.

- Modulation format 50Gb/s PAM4
- 800GHz spaced WDM grid

200GbE TOSA/ROSA can be subcomponents for 400GbE too.

λ	200G	400G
1273.54		LO
1277.89		L1
1282.26		L2
1286.66		L3
1295.56	LO	L4
1300.05	L1	L5
1304.58	L2	L6
1309.14	L3	L7

400GBase LR8 implementation example From :cole_3bs_02a_1114

 Among multiple extended reach requirements, developing 50GBase-ER/200GBase-ER4 will be a first step to develop 400GBase-ER8.

 We should consider the commonality among 50G-ER, 200G-ER4, and 400G-ER8 from the initial step.

Thank you

Backup slides

Experimental evaluation result (sone_ecdc_01b_0516)

Table 123–5—Wavelength-division-multiplexed lane assignments

Worst-case dispersion for SMF transmission Lane Center frequency Center wavelength Wavelength range Negative dispersion[8lane] 1272.55 to 1274.54 nm 1273 54 nm L₀ 235 4 THz $0.93 \cdot \lambda \cdot [1 - (1324/\lambda)^4] = -203.3 \text{ ps/nm}$ 1276.89 to 1278.89 nm 234.6 THz 1277.89 nm L_1 233 8 TH₇ 1282.26 nm 1281.25 to 1283.27 nm La Negative dispersion[4lane] L3 233 THz 1286.66 nm 1285.65 to 1287.68 nm $0.93 \cdot \lambda \cdot [1 - (1324/\lambda)^4] = -113.4 \text{ ps/nm}$ 1295.56 nm 1294.53 to 1296.59 nm 231.4 THz L_4 1299.02 to 1301.09 nm 230.6 THz 1300.05 nm Ls Positive dispersion 229.8 THz 1304.58 nm 1303.54 to 1305.63 nm L_6 229 THz 1308.09 to 1310.19 nm $0.93 \cdot \lambda \cdot [1-(1300/\lambda)^4] = +38.5 \text{ ps/nm}$ L_7 1309 14 nm

Table 123–12—Transmitter compliance channel specifications

PMD type		Dispersion ^a (ps/nm)		Insertion	Optical	Max
		Minimum	Maximum	loss ^b	loss ^c	DGD
400GBASE-FR8	0.	$0465 \cdot \lambda \cdot [1 - (1324 / \lambda)^4]$	$0.0465 \cdot \lambda \cdot [1 - (1300 / \lambda)^4]$	Minimum	19.8 dB	0.8 ps
400GBASE-LR8	0.	2325 · [1 – (1324 / λ) ⁴]	$0.2325 \cdot \lambda \cdot [1 - (1300 / \lambda)^4]$	Minimum	17.6 dB	0.8 ps

4 x LR8-value