Working Towards 100Gb/s Serial Electrical Channel Technical Feasibility

Richard Mellitz, Samtec Phil Sun, Credo Semiconductor

May 2017, IEEE P802.3 interim session IEEE 802.3 New Ethernet Applications Ad Hoc

1

Contribution Acknowledgements

□ Scott McMorrow, Samtec

□ Keith Guetig, Samtec

Agenda

- □ Channels, Form, and Fit
- History
- One approach to channels
- Results showing feasibility
- Early actions for moving forward
- Summary

Scope

Only electrical technical possibilities

□ No other CSD's (Criteria for Standards Development) discussed

Electrical Landscape

Backplane

- 19 inch Rack
- 2 connectors
 - Sometimes more
- Device to device requirements in neighborhood of 1 meter
- Electrical Twin Axial Cable
 - 3 to 5 meters supported for latest 25G serial data rate
 - Longer for rates

Chip to Chip

- 1 connector
- Around ½ meter reach
- Similar to backplane
- □ Chip to Module
 - Compatible with both for twin axial cable and optics modules
 - Around 10 inch reach
 - Significantly less electrical capability

IEEE 802.3 New Ethernet Applications Ad Hoc

Decreasing Loss & Serdes Complexity

History: Backplane Represents the Baseline Channel Budget

10 Gb/s serial Example: (10G Base KR) – 1 meter reach, ~23 dB

25 Gb/s: More Loss But at a Higher Frequency

Example of 25 Gb/s backplanes

• Crosstalk not shown here

50 Gb/s PAM4 Serial: "Cleaner" Channels Needed

Examples of 50 Gb/s PAM4 Backplanes

• Crosstalk not shown here

IEEE 802.3 New Ethernet Applications Ad Hoc

100 Gb/s PAM4 Signaling Rate ~ <u>26 GHz</u>

50 Gb/s PAM4 designs have too much loss!

Crosstalk not shown here

What Fits into the 19" Rack Backplane Paradigm? and Has Acceptable Losses

- Cabled backplanes can achieve between 20 dB and 30 dB loss at 26 GHz
 - chip to chip
 - AKA BGA to BGA
- Maybe a basis for a channel budget
- Other designs could fit the bill too
 - Such as orthogonal backplanes

Between 20 dB and 30 dB loss is achievable in a cable backplane design

□ This loss seems reasonable. This is not the whole story

Pulse response: 3 UI cursors on rising edge

Between 20 dB and 30 dB Loss Is Achievable for a Cabled Backplane Design

This loss seems reasonable. This is not the whole story

Keeping Crosstalk Below 0.7 mV ICN will be a Challenge, but Feasible

Modified COM shows better than 3 dB for the 1 meter precurso cabled backplane

The COM package assumptions = 14 dB loss at the signaling frequency!

_	Table 93A-1 parameters				I/O control	I/O control		
	Parameter	Setting	Units	Information	DIAGNOSTICS 1	logical		
	f_b	53.125	GBd		DISPLAY_WINDOW 1	logical		
	f_min	0.05	GHz		Display frequency domain 1	logical		
	Delta_f	0.01	GHz		CSV_REPORT 1	logical		
	C_d	[1.5e-4 1.5e-4]	nF	[TX RX]	RESULT_DIR .\results\D1p2_{date}\			
	z_p select	[12]		[test cases to run]	SAVE_FIGURES 1	logical		
	z_p (TX)	[12 30]	mm	[test cases]	Port Order [1 3 2 4]			
	z_p (NEXT)	[12 12]	mm	[test cases]	RUNTAG V175_m9_dfe38_			
	z_p (FEXT)	[12 30]	mm	[test cases]	T_r 0.007	ns		
	z_p (RX)	[12 30]	mm	[test cases]	FORCE_TR 1	logical		
	C_p	[1.0e-4 1.0e-4]	nF	[TX RX]				
	R_0	50	Ohm		Table 93A–3 parameters			
	R_d	[45 45]	Ohm	[TX RX] or selected	Parameter Setting			
	f_r	0.75	*fb		package_tl_gamma0_a1_a2 [0 1.734e-3 1.455e-4]			
ra	c(0)	0.6		min	package_tl_tau 6.141E-03			
	c(-1)	[-0.25:0.05:0]		[min:step:max]	package_Z_c 90			
or 🛛	c(-2)	[0:0.025:0.15]		[min:step:max]				
		[-0.15:0.025:0]		[min:step:max]	Operational control			
	c(-4)	0		[min:step:max]	COM Pass threshold 3	dB		
	c(1)	0		[min:step:max]	Include PCB 0	Value		
	g_DC	[-20:1:-6]	dB	[min:step:max]				
	f_z	21.25	GHz		g_DC_HP [-9:1:-1]			
	f_p1	21.25	GHz		f_HP_PZ 1.328E+00	GHz		
	f_p2	106.25	GHz					
	A_v	0.45	V	tdr selected				
	A_fe	0.45	V	tdr selected				
	A_ne	0.63	V	tdr selected	This table is a she fan			
	L	4			I his table is only for			
	М	32			Constitution Allocations and			
	N_b	30	UI		feasibility. A lot more work			
	b_max(1)	0.7						
	b_max(2N_b)	0.2			will be required.			
	sigma_RJ	0.01	UI					
	A_DD	0.02	UI					
	eta_0	1.64E-08	V^2/GHz					
	SNR_TX	34	dB	tdr selected				
	R_LM	0.95						
	DER_0	1.00E-04						

PHY Simulation Example Setup for Consideration

- □ Insertion loss for 2 m cable backplane is -31. 92 dB @ 26.6 GHz, ICR is 20.86 dB @ 26.6 GHz.
- □ A low loss package model included
- □ TX SNDR: 34 dB
- □ Jitter: RJ 0.01 UI rms, even/odd: 0.02 UI p2p.
- Device noise and distortion are modeled.

IEEE 802.3 New Ethernet Applications Ad Hoc

PHY Simulation Shows Promising Results

□ BER is about 6.2E-8.

□ TX FIR: 3 pre cursors, 25 post cursors, tail taps are very small.
□ RX: CTLE + DFE.

Of course follow-on work will happen.

Preliminary Work Before Study Group and Task Force Gets into High Gear

- □ Package tough decisions
 - 25-35 % of a channel insertion loss budget for 100 G PAM-4 based is not really acceptable
 - Consider manufacturing variations
 - http://www.ieee802.org/3/cd/public/adhoc/archive/hidaka_020117_3cd_adhoc.pdf
 - Consider PHY types for package S M L?
- □ Equalization Needs to consider more
 - Pre-cursors
 - Post-cursors
 - Continuous Time
 - Other approaches for reference equalizers
- □ COM
 - Reference equalization may tax the quick run time of a COM computation
 - New methods may need to be considered
- Noise sources
 - Signal isolation
 - Tx to Rx and port separation needs to support 0.7mV or less noise
 - Bounded vs Gaussian noise assumptions
- Lower impedance targets
 - A lot of prior work suggest margin improvements are possible

Summary

- □ A 100 Gb/s backplane channel shown
- Rudimentary computations and simulation suggest operation is in sight
- □ A list of early actions suggest efficiency improvements for project
 - Perhaps before the CFI?
 - Use NEA to facilitate?