

NEA: Multi Gig optical of Automotive CFI consensus building

November 2018

First call report

- Consensus building around the Automotive Optical Multi Gig CFI preparation
- Two calls 18/Oct/18 in different time slot: Total 41 attendees
 - 20 Europe + ASIA
 - 22 Europe + America

Introduction to optical in Automotive

Optical Communications in automotive

	Speed (Mbps)	Application	Year	
D2B	12	Digital audio	1992	Optical communications well established automotive
MOST	25, 150	Infotainment	2001-2008	
Byteflight	10	Safety-critical	2001	
Firewire	400	Infotainment	2004	

Gigabit POF: Standardization

Gigabit POF: Zoom into components

Connector types

Small form factor connector

MOST-150 style connector

Sky-looker connector

USE CASES

Use Cases

Where is used today ?

- (Show OEMs brand names with their permission)
- (Show TIER-1/2 brand names with their permission)
- Applications used:
 - Battery Management Systems
 - Network backbone
 - Smart Antenna link
 - ADAS safety redundant links
 - Infotainment

Why is optical being used today?

- Main reasons
 - Galvanic isolation for electrical cars
 - Superior EMC performance
 - EMC in critical areas like antennas
 - Superior EMI performance
 - EMI in very noisy environments like electrical cars
- Other reasons
 - Weight
 - Robust and reliable solution
 - Already qualified cables and connectors
 - Path to very high speeds (x00 Gbps)
 - Copper and optical links co-exist in the same car
 - Different use cases
 - Redundancy for safety requirements

Multi Gigabit

GM / NGAUTO Poll

Surveys – OEM Responses

Cable Types – Should different speeds use the same cable or is it okay if they're different? 68.75% of respondents said it is okay to use different cables for different speeds

Is it okay to use optical cable?

50% of respondents said they would consider using optical cable

Maximum operating temperature

- 62.5% need 105 C for most or all speeds
- 18.75% need more than 105 C for some or all speeds
- 18.75% say 85 C is sufficient for all speeds

Minimum operating temperature

- 100% agree that -40 C is sufficient
- -55 C is required for storage

13	

Multi Gigabit applications

- Back-bone
 - Symmetric trafic. Full duplex.
 - May be in redundancy configuration for safety systems
 - 1 to 6 links per car
 - Mixed data type (Control, Multimedia, ADAS, Sensors data, raw video, etc)
 - Aggregation of all data generated in the car
 - Very high speed redundant links with ADAS system

Camera & Display

- Very asymmetric trafic
- 1 to 5 display links per car
- 1 to 8 camera links per car
- Raw video data type
- Need of unidirectional link
- Upstream can be done via other links (10_SPE)

Single component PHY approach

• Due to speed requirements a single component PHY is needed

Multi-Gig optical link for cameras. Implementation example

Camera application requires a special approach:

10GBASE-SR

- to develop multi-gigabit optical solution for automotive applications.
 - However, is it really good enough for automotive applications?
- Difference between 10GBASE-SR and the Automotive requirements: •
 - Temperature range: $T_j = -40^{\circ}C \rightarrow 105^{\circ}C/125^{\circ}C$ and 15 years of operation with 0 ppm failures
 - So VCSEL current density needs to be reduced to achieve reliability and target temperature range
 - VCSEL Bandwidth will be highly reduced
 - Relative intensity noise will increase
 - Insertion Loss will be increased due to:
 - 4 inline connectors with much higher estimated losses per connector due to vibrations, aging, dust, etc.
 - Cost and power consumption restrictions are different •
 - Is it possible to have high yield manufactured components (Connectors, VCSEL, PD, etc) with the new requirements meeting cost needs?
 - Is it possible to have a low power implementation with improved reliability, and implementable in a car?
 - OAM channel is needed
 - System needs to be adaptive to cope with:
 - dynamic changes of temperature
 - large parametric variation with manufacturing processes and temperature

• IEEE Std 802.3 already includes the 10GBASE-SR specification that may be considered as starting point

Proposed CFI

Speed / Operation

- Backbone:
 - Today backbones are 100 Mbps / 1 Gbps
 - **10 Gbps** should be the natural step
 - 2.5 Gbps and 5 Gbps should also be provided. Lower power consumption and lower MAC/system requirements
 - Is 25 Gbps, 50 Gbps, 100 Gbps needed ?
 - Some OEMs has communicated the need of 25 & 50 Gbps. Justification under preparation.
 - FULL DUPLEX
- Automotive camera requires:
 - High resolution (Today 1 -2 Mbpx is used. Future is targeting 4/8 Mbpx)
 - High dynamic range per pixel (See in the dark, no saturation of camera, etc)
 - High frame rate (Fast ADAS reaction)
 - No/minimal compression to avoid loss of information and increase of latency and power consumption
 - 4/8 Mbpx x 24 bppx x 60 fps = 6/12 Gbps
 - Required speed: 10 Gbps / 12.5 Gbps
 - SIMPLEX (Unidirectional)

Type of fibre

- MMF glass fibre: OM1 to OM5 (50um/125um)
 - Very high volumes
 - High temperature (125°C)
- GI-POF: (80um/400um)
 - Robust
 - Flexible
 - Larger
- PCS / HCS / GI-HCS
 - Robust
 - Lower bandwidth
 - High temperature (125°C)
 - Two develop single PMD per speed. Different fibres may be qualified according to PMD power budgets

Cable Requirements

- 15 m + 4 in-line
- 40 m
- Key parameter is the amount of inline connectors.
- Length is less critical

Technical feasibility

- Simulation provides enough link budget
 - More than 10 dB of link budget at 12.5 Gbps & VCSEL Tj = 125 °C

Proposed Calendar

- CFI: Target date: July 2019 meeting
- Task Force: End 2019 / Beginning 2020
- Publication: Early 2022

