

Optical Multigig Automotive Ethernet

CFI Consensus building NEA AdHoc

March 2019 - Vancouver

Carlos Pardo

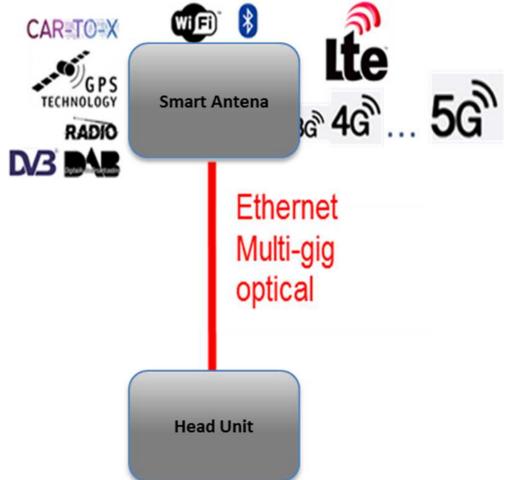
cpardo_nea_01d_0319

IEEE 802.3 NEA AdHoc - March 2019 - Vancouver

1

OEM use cases

- Feedback from several individuals in OEMs:
 - Doarte Gonzalves PSA
 - Magnus Eek Volvo
 - Natalie A Wienckowski GM
 - Michael Kaindl BMW
 - Dr Rüdiger Roppel Porsche
 - Mashita Yoshihisa Jaspar:


Toyota, Nissan, Honda, Mazda, Suzuki MC, Isuzu, Subaru, ...

Use case name: Smart antenna Model year intro date: Q1/FY25 Use case description: Antenna hub which aggregates signals from GNSS, 5G, RF and GPS and sends it the head unit Max. Bitrate: 2.5 Gbps Key issues to take into account: Radiation self coupling of transmission line into antenna Low profile Non conductive ceiling High temperature profile (105°C) Maximum latency 5 us

Source: Doarte Gonzalves PSA

Use case name: Multi-domain Backbone Model year intro date: Q1/FY25

Use case description:

Aggregation of main Ethernet

communication over backbone link between main Ethernet ECU's

Max. Bitrate: 5 / 10 Gbps

Key issues to take into account:

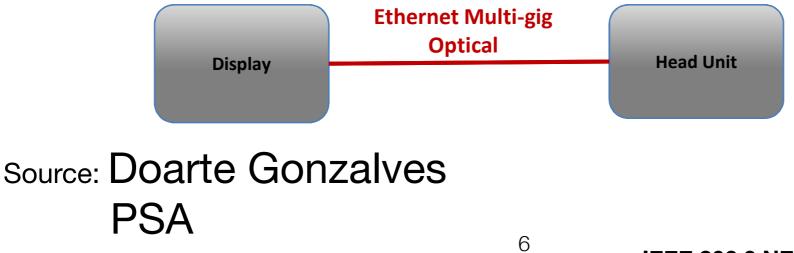
High temperature profile (105°C) Latency, ...

Body Domain Ethernet Multi-gig Optical ADAS Domain Domain

GROUPE

Use case name: SENSORS (Cameras, Lidars,...) Model year intro date: Q1/FY25 Use case description: Aggregates high definition signals from sensors (video without compression) Max. Bitrate: 2.5 / 5 Gbps Key issues to take into account:

High temperature profile (105°C) Low latency



Use case name: Display Model year intro date: Q1/FY25 Use case description: Aggregates high definition signals from video source to Screen Max. Bitrate: 2.5 / 5 Gbps Key issues to take into account:

High temperature profile (105°C) Latency, ...

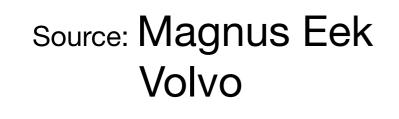
Multi-Gigabit use case 5G Connectivity

Use case name: 5G Connectivity / Smart antena

Model year intro date: TBD

Use case description: Antenna hub which aggregates signals from GNSS, 5G, RF and GPS and sends it to the head unit

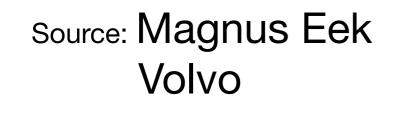
Max. Bitrate: 2.5 Gbps


Key issues to take into account:

Radiation self coupling of transmission line into antenna Low profile Non conductive ceiling

- High temperature profile (105°C)
- Maximum latency 5 us

VOLVO



Multi-Gigabit use case Magnetic Immunity communication

Use case name: Electro Magnetic Immunity communication Model year intro date: TBD Use case description: Communication for high Electro Magnetic Immunity for AD Fall back minimum risk condition (Intentional EMI for Safe Stop, Thunder)

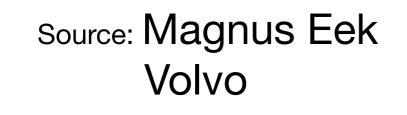
Multi-Gigabit use case Back bone

Use case name: Back bone

Model year intro date: TBD

Use case description: Communication between Core System ECUs

Max. Bitrate: 10 Gbps


Key issues to take into account: Position in car both engine and

passenger compartment.

High temperature profile (125°C)

Multi-Gigabit use case Uncompressed camera

Use case name: Uncompressed camera data Model year intro date: TBD Use case description: Raw data from camera to processing unit. Max. Bitrate: 10 Gbps

Key issues to take into account:

Multi Gig optical use cases

- Camera, Display, Sensors connection (Serializer function!)
 - Asymmetric function needed.
 - Download up to 10Gbit, uni directional;
 - Upload: Low Speed (10...100MB) Status/ Control
- Backbone point to point 2...10 ECU
 - Required for Autonomous Driving Level 3 and beyond
 - Bandwidth from 2.5 Gbps to very high speeds
- Data cloud in the car (as one potential solution)
 - A central data storage system, where the data available for usage when needed/requested by the processor.
 - Also, we should use higher level of SW-Design & abstraction, in order to achieve flexible structures, and reduce amount of information to be stored

Source: email from Dr Michael Kaindl BMW

Multi Gig optical use cases

Camera connection

- TODAY
 - Download stream 1GB, up to 6 Gbps ; upload stream 100 Mbps is enough
- Future
 - Asymmetric function (only) needed. Download up to 10 Gbps, upload 10/100 Mbps

Autonomous driving

- Camera/radar sensors applications
 - Serial (one direction) link is required. Download stream up to 10 Gbps. No upload
- Display:
 - We need the asymmetric mode:
 - High speed: Image Data, uni directional
 - Low Speed (10...100 Mbps) Status/ Control
- Backbone point to point 2...8 ECU units
 - In redundancy configuration. Optical & Copper.
 - Bandwidth 10 Gbps and beyond

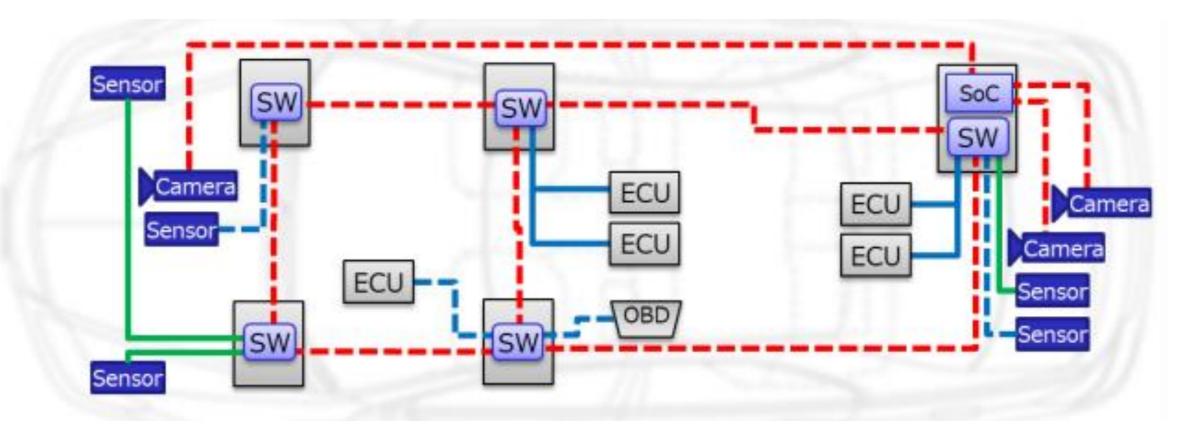
Source: email from Dr Rüdiger Roppel Porsche

GENERAL MOTORS

I am interested in investigating the suitability of optical Ethernet for Automotive applications faster than 10 Gb/s, e.g. environment, manufacturability, serviceability, etc.

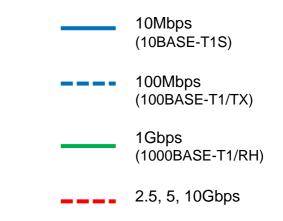
I expect that as speeds increase, optical may have an advantage in some or all of EMC, power, weight.

Source: email from Natalie Wienckowski General Motors



Industry activity status

- Jaspar: Japanese automotive industry association (<u>https://www.jaspar.jp/en/</u>)
 - Vision
 - Lead the automotive industry by promulgating and encouraging the broad-based adoption of new ideas and technologies.
 - Mission
 - Identify the common issues to be faced in the future by the automotive electronics sector.
 - Undertake standardization initiatives aimed at resolving identifed issues.
 - Members
 - 12 OEMs (Toyota, Nissan, Honda, Mazda, Suzuki MC, Isuzu, Subaru, …)
 - 43 Suppliers
 - 78 Software/Tool vendors
 - 27 Semiconductor/Component vendors
 - 25 Others (Trading companies, Universities,...)



Use of optical or copper multi-gig Information provided by Jaspar

 Source: Mashita(真下 喜久) Yoshihisa

Jaspar

Use cases

	2.5 Gbps	5 Gbps	10 Gbps	25 Gbps	50 Gbps	Unidirectional
Backbone						
Smart Antenna						
Cameras, Sensors						
Display						
Future						

Is there critical mass in the industry to provide very high speed optical links for Automotive ?

Is there critical mass in the industry to provide very high speed optical links for Automotive ?

- High bandwidth Fibres
 - Capable of support automotive requirements: Thermal, Aging, Cost, ...
 - Bending
 - Strength
- Connectors
 - Capable of support automotive requirements: Thermal, Aging, Cost, …
 - Water / Dust Proof
 - Vibrations
 - Strength
 - Losses

- VCSELs
 - Capable of support automotive requirements: Thermal, Aging, Cost, ...
 - Bandwidth
- Photo Diodes
 - Capable of support automotive requirements: Thermal, Aging, Cost, ...
 - Noise
- Semiconductors
 - Knowhow to develop high speed optical links for Automotive applications

Fibres

• Different suppliers are suggesting different fibres

Nitto Plastic optical fiber target spec & launch schedule Nitto

Tarç	jet spec	Launch schedule		
Term	Nitto POF			
Feature	High speed Wide band width	2018		
Core/Clad	50um/250um	Dec Pilot line installation		
Wavelength	850nm	2019		
Band width(MHz.km)	≧750	Start sample shipment		
Distance	<50m	2020		
Bending(R)	<2.5mm	2020 Volume production		
Easy to use	0			
Attenuation loss	<0.07dB/m			
Noise	O(Optimized material structure)	Nitto will start Plastic Optical Fiber volume production for automotive industry before standardization would be finalized.		
Heat resistance(Tg)	105℃			

*These will be our target value and would subject to change.

Source: Takahashi, Tadashi; Nitto

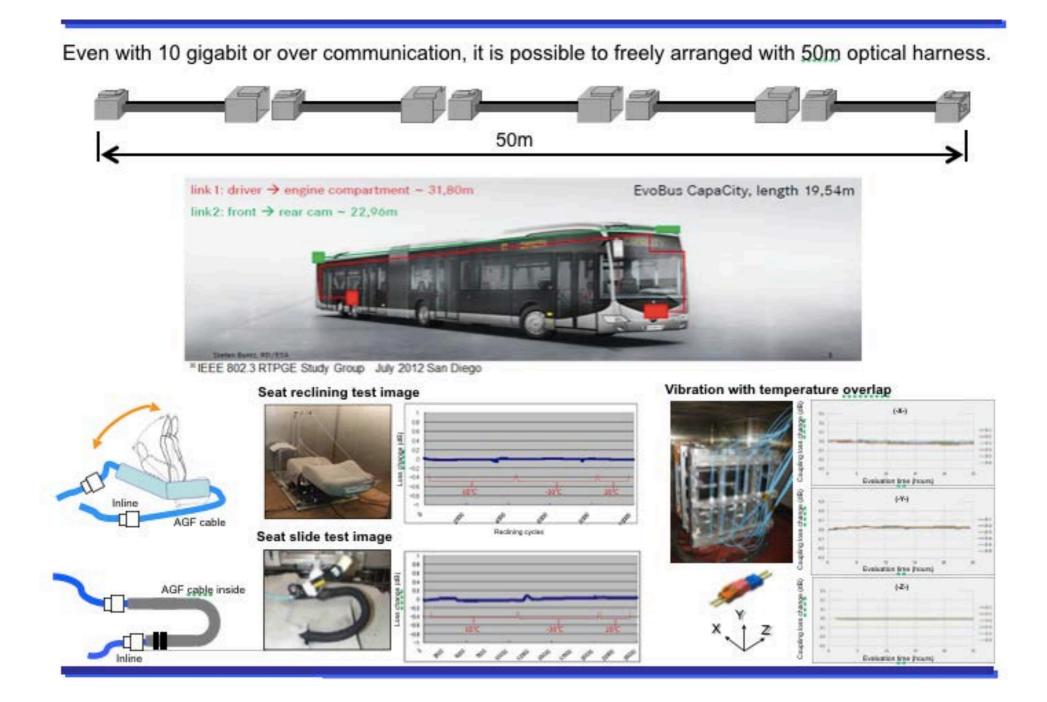
Innovation for Customers

Fibres

Different suppliers are suggesting different fibres

Attenuation: ≤ 2.8 dB/km @ 850 nm (depending on core size)

BW: ≥ 4700 MHz-km @ 850 nm (depending on type and launch)


http://www.ieee802.org/3/NGAUTO/public/jan17/whelan_3NGAUTO_01b_0117.pdf

20

IEEE 802.3 NEA AdHoc - March 2019 - Vancouver

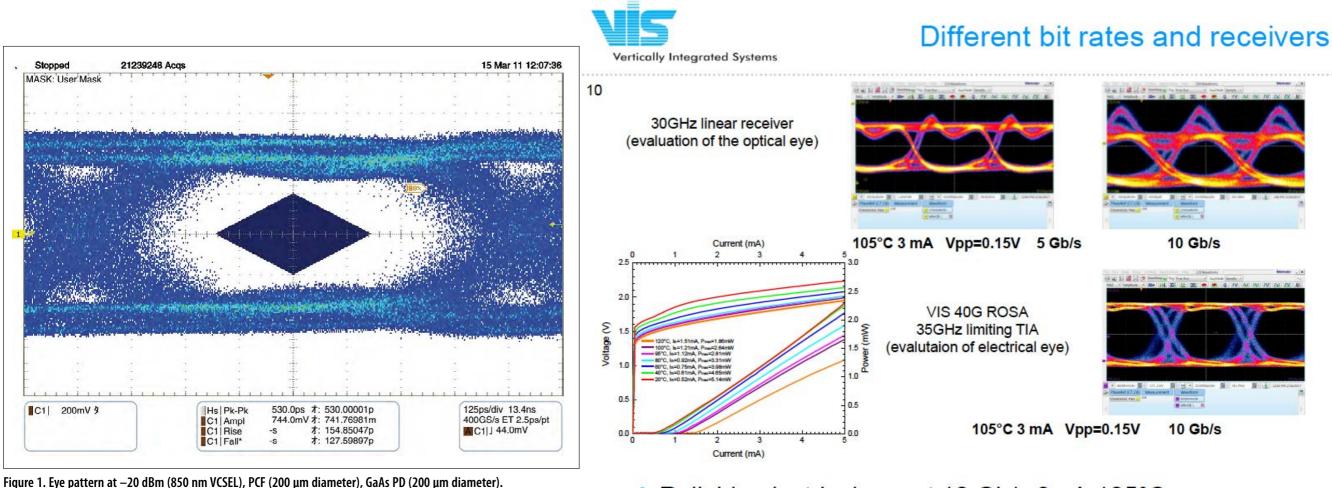
Fibres

• Different suppliers are suggesting different fibres

Source: Hayato Yuki, Sumitomo Electric

Connectors

 Connector suppliers are in advanced development of Multi-gig optical connectors


Source: Ulrich Kleymann, Yazaki

Optical devices

- VCSELs and PD being qualified for Automotive applications
 - Reducing current density of VCSEL

(Source: Hamamatsu Photo

• Use robust PD architectures

→ Reliable electrical eye at 10 Gb/s 3mA 105°C

Source: Takayuki Suzuki Hamamatsu Photonics

Presentation for IEEE 802.3 Multi-Gig Automotive Ethernet PHY Study Group

VI Systems GmbH

http://www.ieee802.org/3/NGAUTO/public/adhoc/Kropp_NGAUTO_0317.pdf

Semiconductors

- 1000BASE-RH is a successful story implementing advance modulation techniques in automotive optical applications:
 - Linear high speed opto-electronics
 - 16 PAM modulation
 - TH precoding
 - Multilevel coset coding with BCH inner code
 - Advanced equalization and synchronization

CFI proposal

- To create a Study Group for the standardization of an Optical Multi Gig Ethernet Physical Layer in Automotive Applications
 - To be presented during July Plenary in Vienna

