1EEE 802.3 NEA Ad hoc 14 Sept 2020

IEEE 802.3 Call for Interest CFI Consensus Presentation Draft Development

"Beyond 400 Gb/s Ethernet"

John D'Ambrosia Futurewei Technologies U.S. Subsidiary of Huawei

OBJECTIVE FOR THE MEETING

- > To measure the interest in starting a study group to VERSION PENDING address "Beyond 400 Gb/s Ethernet"
- We don't need to
 - > Fully explore the problem
 - > Debate strengths and weaknesses of solutions
 - > Choose any one solution
 - > Create PAR or five criteria
 - Create a standard or specification
- Anyone on the call may speak / vote
 - > RESPECT... give it, get it

Contributors

- > John D'Ambrosia, Futurewei, U.S. Subsidiary of Huawei
- > Matt Brown, Huawei Canada
- > Joel Goergen, Cisco
- > Mark Gustlin, Cisco
- > Cedric Lam, Google
- David Piehler, Dell-EMC
- > Ted Sprague, Infinera
- Rob Stone, Facebook
- Jim Theodoras, HG Genuine
- Nathan Tracy, TE Connectivity
- > Tedros Tsegaye, Innolight
- Xinyuan Wang, Huawei
- DRAISO
 - > IEEE 802.3 2020 Ethernet Bandwidth Assessment
 - > IEEE 802.3 NEA Ad hoc

Today's Panel

DRAFT DEVELOPMENT - FINAL VERSION PENDING

AGENDA

- > Introduction
- > Presentations
- ► Market Pressures for Beyond 400 GbEN
 ► The Technical Roadman to a > Beyond 400 GbE Why Now?
 > Straw Polls OP

 > Future Work

THE SCOPE OF ETHERNET TODAY

Potential for Technology Reuse

Reuse of signaling rate technologies developed for higher Ethernet rates enables existing lower speed Ethernet rate specifications (AUI, -KR, -CR, -SR, - DR, -LR, -ER)

Image courtesy of David Piehler, Dell-EMC

- 32 400 Gb/s capacity ports
- Can be configured to support32 400 GbE ports
- Can be configured to support128 100 GbE ports

"It has been my experience at Google that we have used optical and cu modules to support different configurations of a given port, including applications that require the maximum capacity of the single port."

Cedric Lam, Google

MARKET
PRESSURES FOR
BEYOND 400 GBE

ORAFT DEVELOPMENT - FINANCIAL PROPERTY OF THE PROPERTY OF

DATA CENTERS CONTINUE AS A PRIMARY DRIVER

Courtesy - Cedric Lam, Google

THE SONG REMAINS THE SAME

> 2020 Ethernet Bandwidth Assessment (BWA) documented latest analysis of industry bandwidth needs and driving factors of PENDING

Increased x Increased access and x Increased = Bandwidth Explosion

2020 Ethernet BWA

- > Report https://bit.ly/802d3bwa2
- > Tutorial https://bit.ly/802d3bwa2_tut
- > Reference slides in Appendix: Backup Slides

The 2020 Ethernet Bandwidth Assessment

EXAMPLE EMERGING APPLICATION – 5G BACKHAUL

Source:	
http://www.ieee802.org/3/B10K/public/18_01/wang_b	10k
_01b_0118.pdf	

	LTE	LTE Advanced	5G
Africa	145	42	A
Asia & Pacific	162	74	29
Eastern Europe	93	D 59	14
Latin America & Caribbean	127	50	8
Middle East	RAI	29	12
U S & Canada	20	11	7
Western Europe	88	70	31
Global Totals	683	335	105

Source: as of 8/14/2020, https://www.5gamericas.org/resources/deployments/

ARTIFICAL INTELLIGENCE & COMPUTE

- First Era (Before 2012)
 - Moore's Law 2-year doubling
 - Uncommon to use GPUs for
- Modern Era (2012 and later)
 - > 2012 2014: most results
 - > 2014 2016: large-scale
 - > 2016 **2017**: greater algorithmic parallelism (huge batch sizes, architecture search, expert iteration), specialized hardware (TPUs), faster interconnects

Source - OpenAI blog post 'AI and Compute' addendum 'Compute used in older headline results' posted 7th November 2019 by Girish Sastry, Jack Clark, Greg Brockman and Ilya Sutskever https://openai.com/blog/ai-and-compute/>.

MORE OF THE SAME.....

COVID-19 TRENDS, APRIL 2020

Source - Inphi blog post 'Bandwidth in the Age of COVID-19' posted 22nd April 2020 by Ford Tamer, President and CEO, Inphi Corporation https://www.inphi.com/blog/>

SUMMARY

- Bandwidth growth continues and underlying factors indicate further bandwidth growth
 Video and mobile!
 Increasing delta between "peak" and "average"
- > New applications fueling bandwidth growth
- > In today's COVID-19 world
 - Connectivity has been critical!
- nstantaneous" growth in multiple application spaces
 - > "Up and to the right" continues

THE TECHNICAL ROADMAP TO BEYOND 400 GbE

Understanding the Typical Physical Challenges

Figure courtesy Jim Theodoras, HG Genuine

Beyond 400 GbE C2C / C2M AUI Development

THE CHALLENGES TO BEYOND 400 GBE

MAC/PCS Technical Feasibility

The options below are very feasible in near term technology (as an example, actual rate(s) are TBD)

	MAC Rate	Technology Node	Device Type	Bus Width	Clock Rate
DF	800 Gb/s	5 nm	ASIC	1024b	800 MHz
	DAFT DE	5 nm	ASIC	512b	1.6 GHz
		7 nm	FPGA	1536b	533 MHz
	1.6 Tb/s	5 nm	ASIC	2048b	800 MHz
		5 nm	ASIC	1024b	1.6 GHz
		5 nm (or equiv)	FPGA	3072b	533 MHz

Source - Mark Gustlin, Cisco

PCS/FEC

- Previous PCS concepts could be re-used
 - > 64b/66b, transcoding, scrambling, AMs
- > Will likely want a new stronger FEC for 200 Gb/s lane (if the project chooses to define 200 Gb/s per lane)
 - Multiple FEC options for direct detect, coherent light and longer reach coherent?
 - > Still support end to end FEC for some options?
 - Optimize gain, latency, power and implementation burden for chosen FECs
 - While minimizing the overall number of FEC options

CMOS Roadmap

- The upper data (blue) shows evolution of electrical lane data rate over time.
- The lower data (red) shows the evolution of node label over time.
- Current designs for 100 Gb/s per lane are in 7 nm and are moving to 5 nm.
- ➤ 3 nm and 2.1 nm will be available when 200 Gb/s per lane is standardized.
- > The node label (halving every 3.4 years) is progressing faster than the electrical lane rate (doubling every 3.9 years).

Source - Matt Brown, Huawei Canada

DSP Architecture Advances

DRAFT DEVELOPMENT - FINAL VERSION PENDING

Beyond 400 GbE - Leveraging 100 Gb/s

Industry Efforts - 100 Gb/s Signaling

- > IEEE 802.3
 - > Standard IEEE P802.3bs 400GBASE-DR4 (4x100G)
 - >In Development
 - > IEEE P802.3ck 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force
 - > IEEE P802.3cu 100 Gb/s and 400 Gb/s over SMF at 100 Gb/s per Wavelength Task Force
 - > IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force
- > Other Industry Efforts
 - ➤ OIF Common Electrical Interface 112G Efforts
 - > 100G Lambda MSA (100Gb/s optical interfaces specifications)

800 Gb/s Industry Activities

- Ethernet Technology Consortium
 - https://ethernettechnologyconsortium.org/
 - > "The 800 GbE specification introduces a new media access control (MAC) and Physical Coding Sublayer (PCS)"
- > QSFP-DD800 MSA
 - http://www.qsfp-dd800.net/Rev 1.0 released Mar 6 2020
- > OSFP
- > 8006 Pluggable MSA
 - https://www.800gmsa.com/
 - > 800G PSM8 specification (Draft 1.0) Specification covering cost effective 8x100G transmission over at least 100m

Source-Nathan Tracy, TE Connectivity

Example: 800 Gb/s OSFP Capacity Module

- 8x100G DR8+ 2km with MP0-16 and 2x400G FR4 with CS connector connector / \
- OLF CEI-112G-VSR interface
- PMD spec follows 400G DR4+ and FR4. interoperable with 400G
- 0~70degC 18W, 10~60C 17W
- 7nm DSP inside

Source - Tedros Tsegaye, Innolight

Beyond 400 GbE - Leveraging 200 Gb/s

Beyond 100 Gb/s Research is Underway

- S. Yamaoka et al., "239.3-Gbit/s net rate PAM-4 transmission using directly modulated membrane lasers on highthermal-conductivity SiC" in Proceedings of European Conference on Optical Communication (ECOC), 2019/9. ENDING
- X. Pang et al., 200 Gbps/lane IM/DD Technologies for Short Reach Optical Interconnects, https://core.ac.uk/download/pdf/289286726.pdf, 2019/04/24.
- W. Heni et al., Ultra-High-Speed 2:1 Digital Selector and Plasmonic Modulator IM/DD Transmitter Operating at 222 GBaud for Intra-Datacenter Applications, https://www.osapublishing.org/ilt/abstract.cfm?URI=jlt-38-9-2734, 2020/9.
- S Lange et al., 100 GBd Intensity Modulation and Direct Detection with an InP-based Monolithic DFB Laser Mach-Zehnder Modulator, Journal of Lightwave Technology, https://www.researchgate.net/publication/319259046 100 GBd Intensity Modulation and Direct Detection wit h an InP-based Monolithic DFB Laser Mach-Zehnder Modulator, 2017/8.
- E. Sentieri et al., "12.2 A 4-Channel 200Gb/s PAM-4 BiCMOS Transceiver with Silicon Photonics Front-Ends for Gigabit Ethernet Applications," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, pp. 210-212, doi: 10.1109/ISSCC19947.2020.9062992.
 - **Wettlin et al., "Beyond 200 Gb/s PAM4 transmission using Tomlinson-Harashima precoding," 45th European Conference on Optical Communication (ECOC 2019), Dublin, Ireland, 2019, pp. 1-4, doi: 10.1049/cp.2019.0834.
- Net 212.5 Gbit/s Transmission in O-band With a SiP MZM, One Driver and Linear Equalization, Maxime Jacques 1, Zhenping Xing1, Alireza Samani1, Xueyang Li1, Eslam El-Fiky1, Samiul Alam1, Olivier Carpentier1, Ping-Chiek Koh2, David Plant1; 1McGill Univ., Canada; 2Lumentum, USA. OFC-2020, Post deadline paper Th4A.3

200 Gb/s Signaling - The Next Generation?

- > OIF approves CEI 224G Development Project
- https://www.businesswire.com/news/homex202

800 Gb/s Single Wavelength Transmission

The Future of Coherent is emerging

- Successful trial of 800 Gb/s single-wave transmission over
 950 km - https://bit.ly/2Wdkh8e
- Platform supporting 200 Gb/s to 800 Gb/s single-carrier https://bit.ly/2KLpW05
- "Industry's first 800G tunable ultra-high-speed optical module" <u>https://bit.ly/2yTYNFK</u>
- "Verizon says it has successfully transmitted an 800-Gb/s wavelength on its live network" https://bit.ly/3d2GX1M

SUMMARY

- > Path to Beyond 400 GbE exists

- Leverage 100 Gb/s building blocks
 800 GbE building blocks and example available now
 Plausible implementation generation
 - > 800 Gb/s over a single wavelength for DWDM systems is emerging now

BEYOND 400 GbE
WHY NOWENT

DRAFT DEVELO

The 2020 Ethernet Bandwidth Assessment

Source: https://bit.ly/802d3bwa2

TRENDLINE - SWITCH CAPACITY

TRENDLINE - SERDES DEVELOPMENT

Source: Matt Brown, Huawei

Understanding the Typical Physical Challenges

CONSIDERING THE NEXT ETHERNET RATE STANDARD

Source: https://bit.ly/802d3bwa2

SUMMARY

- Bandwidth -
 - Underlying factors all indicate continued growth
- New bandwidth generating applications constantly being introduced

 > Mobile (5G) / Video

 > Artificial Intelligence

 > Virtual / Augmented Reality

 Today's world stressing the need for
- Last two "Higher Speed" efforts (from CFI to standard ratification)
 - > 40 / 100 GbE 3 years, 11 months
 - 200 / 400 GbE + 4 years, 9 months
- There is some time between standard ratification and product introduction
 - The bandwidth problem will only continue to grow
- We need to begin the process to study the problem! Big questions to consider
 - Next speed or speeds?
 - What physical layer specifications?

Proposed Study Group Chartering Motion

Approve the formation of a Beyond 400 Gb/s Ethernet Study Group to consider development of a Project Authorization Request (PAR) and Criteria for Standards Development (CSD) responses for:

- Beyond 400 Gb/s Ethernet;
 Physical Layers specifications for existing Ethernet rates based on any signaling rate used for (1).

Supporters (as of 9/14/20)

John	Abbott	Corning Incorporated
Thananya	Baldwin	Keysight Technologies
Vipul	Bhatt	II-VI Incorporated
Paul	Brooks	VIAVI Solutions
Matt	Brown	Huawei Technologies Canada
Leon	Bruckman	Huawei
Frank	Chang	Source Photonics
Ayla	Chang	Huawei
Weiqiang	Cheng	China Mobile
John	D'Ambrosia	Futurewei, U.S. Subsidiary of
		Huawei
John	DeAndrea	II-VI Inc
Claudio	DeSanti	Dell Technologies
Vince	Ferretti	Corning Incporated
Ali	Ghiasi	Ghaisi Quantum LLC
Joel	Goergen	Cisco
Bob	Grow	RMG Consulting
Mark	Gustlin	Cisco
Rubio	Han	China Mobile
Xiang	He	Huawei
Tom	Issenhuth	Huawei
Ken	Jackson	Sumitomo Electric Device
		Innovations USA
John	Johnson	Broadcom
Lokesh	Kabra	Synopsys
Mark	Kimber	Semtech

	Cedric	Lam	Google					
	David	Lewis	Lumentum					
	Junjie	Li	China Telecom					
	Robert	Lingle	OFS					
	Hai-Feng	Liu	HG Genuine					
	Kent	Lusted	Intel					
	Ilya	Lyubomirsky	Inphi					
	Valerie	Maguire	Siemon					
	David	Malicoat	Malicoat Networking Solutions					
	Flavio	Marques	Furukawa Electric					
	Larry	McMillan	Western Digital					
	Rich	Mellitz	Samtec					
	Shimon	Muller						
	Dale	Murray	LightCounting					
	Shawn	Nicholl	Xilinx					
l.	Paul	Nikolich	Independent					
	Tom	Palkert	Samtec					
	Earl	Parsons	CommScope					
	Jerry	Pepper	Keysight Technologies					
	David	Piehler	Dell Technologies					
	Rick	Pimpinella	Panduit					
	Rick	Rabinovich	Keysight Technologies					
	Ed	Sayre	NESA					
	Priyank	Shukla	Synopsys					

oshiaki	Sone	NTT
/lassimo	Sorbara	GlobalFoundries
ed	Sprague	Infinera
lob	Stone	Facebook
teve	Swanson	Corning Incorporated
sharat	Tailor	Semtech
omoo	Takahara	Fujitsu
im	Theodoras	HG Geuine USA
lathan	Tracy	TE Connectivity
edros	Tsegaye	Innolight
eff	Twombly	Credo Semiconductor
id	Ulrichs	Intel
inyuan	Wang	Huawei
angling	Wen	Futurewei
hao	Wenyu	CAICT
Chongjin	Xie	Alibaba
huto	Yamamoto	NTT
ames	Young	Commscope
ľи	Yu	Huawei
liang	Zhou	Google
an an	Zhuang	Huawei
George	Zimmerman	CME Consulting
avel	Zivny	Tektronix

STRAW POLLS

OPMENT - FINANCE OF THE OPMENT - FINANCE

Call-for-interest

- > Call EquinELOPMENT FINAL VERSION PENDING DRAFT

participation

- > I would participate in the "Beyond 400 Gb/s
- Ethernet" Study Group in IEEE 802.3

 > Tally:

 | Deyona 400 Gb/s | PENDING |

Future work

- Ask 802.3 WG for approval
- > If approved, request formation of "Beyond 400"

 Gb/s Fthernet" Study Co. Gb/s Ethernet" Study Group by 802 EC
- > If approved,
 - > Creation of Study Group page /reflector
 - First Study Group meeting [teleconference?] anticipated for Jan 21 Interim

DRTHANK YOU!

APPENDIX:
BACKUP SLADES

DRAFT DEVELO

LINK AGGREGATION WILL NOT SUFFICE

Courtesy, David Ofelt, Juniper.

- Problem: Need to scale the Network (density & cost)
- Temporary Solution: Link Aggregation
- Pros:
 - Addresses bandwidth requirements between releases of faster links

Cons:

- Non-deterministic performance
- Fastest flow limited to individual link speed
- Exponential bandwidth growth implies:
 - Exponential growth in number of links
 - Growth in operational & management issues
- Doesn't scale forever.
- Faster links address these issues <u>and</u> they will be LAGGed!

HIGH PERFORMANCE COMPUTING

WORLD INTERNET USAGE

Total World	As of 3/31/19 ¹	As of 12/31/19 ³	Increase	As of 7/20/20 ²	Increase		
Population	7,716,223,209	7,796,615,710	80,392,501	7,796,949,710	80,726,501		
Internet Users	4,383,810,342	4,574,150,134	190,339,792	4,833,521,806	449,711,464		
Internet Penetration	57%	59%	2%	62%	5%		

Top 20 Countries	As of 3/31/19 ¹	As of 12/31/19 ³	Increase
Population	5,187,499,066	5,233,377,837	45,878,771
Internet Users	3,117,533,898	3,241,273,512	123,739,614
Internet Penetration	60%	62%	2%

Rest of World	As of 3/31/19 ¹	As of $12/31/19^3$	Increase
Population	2,565,984,143	2,5 63, 23 7,873	-2,746,270
Internet Users	1,229,027,955	1,332,876,622	103,848,667
Internet Penetration	48%	52%	4%

Observations

- Only 8 countries had at least 80% connectivity
- \star \approx 450 million users increase
- ❖ 5% increase in Total World Internet Penetration since Mar 31 2019
- 1. IEEE 802.3 BWA, PART II
- 2. HTTPS://WWW.INTERNETWORLDSTATS.COM/STATS.HTM
- 3. HTTPS://WWW.INTERNETWORLDSTATS.COM/TOP20.HTM

GLOBAL DEVICES / CONNECTIONS AVERAGE PER CAPITA

Number of connected devices per capita is growing The average traffic per user is growing at a much faster rate

GLOBAL DEVICE CONNECTION GROWTH (AVERAGE)

North America			,	Western Europe				Central & Eastern Europe					
(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR
Fixed Broadband	43.2	94.2	16.9%		Fixed Broadband	37.9	76.0	14.9		Fixed Broadband	32.8	46.7	7.3%
Wi-Fi	37.1	83.8	17.7%	3	Wi-Fi	25.0	49.5	14.6 %	-3	Wi-Fi	19.5	32.8	11.0 %
Cellular	16.3	42.0	20.8%		Cellular	16.0	50.5	25.8 %		Cellular	10.1	26.2	21.0 %
Latin America Middle East & Africa						~~	Ţ	A	sia Paci	fic			
(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR		(Mb/s)	2017	2022	CAGR
Fixed Broadband	11.7	28.1	19.2 %		Fixed Broadband	7.8	20.2	21.0		Fixed Broadband	46.2	98.8	16.4 %
Wi-Fi	9.0	16.8	13.3 %	3	Wi-Fi	6.2	11.2	12.6 %		Wi-Fi	26.7	63.3	18.8
Cellular	4.9	17.7	29.3 %		Cellular	4.4	15.3	28.3 %		Cellular	10.6	28.8	22.1 %

GLOBAL INTERNET TRAFFIC BUSY-HOUR VS AVERAGE HOUR

IMPACT OF "DEFINITION" ON IP VIDEO GROWTH

Growth in the adoption of HD and UHD dominate IP video traffic

DATA CENTER CAPACITY CONTINUES TO GROW

- * Percent of annual server shipments categorized by speed of the attached controllers and adapters
- ** Annual port capacity shipped on Data Center Ethernet Switches measured in exabits per second

ESTIMATION OF MOBILE TRAFFIC

Global mobile traffic is expediential and may even be underestimated

Source: Report ITU-R M.2370-0: IMT traffic estimates for the years 2020 to 2030, https://www.itu.int/pub/R-REP-M.2370-2015