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Summary

1a. Predicting mode delays, DMD & BW from index error

1b. Predicting index error from DMD measurements.               
(i) matrix approach                                             
(ii) basis function approach

2. Common index errors from the 1GbE MBI study group 
reduced to mode delays; enriching the Cambridge 81 
fiber mix with realistic worst-case perturbations.
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One convenient way to calculate light in multimode fibers 
given an actual measured index profile is to use 
perturbation methods.

All index perturbations are referenced to a base profile 
for which the scalar wave modal functions and 
propagation constants have been solved.  Modes with 
the same         couple strongly and are considered to be 
in the same mode group.

If the index perturbation of the profile of interest is         , 
then  [Snyder & Love section 18-5] the corresponding      
is 

Topic1: Index Profiles mode delays DMD
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For each individual mode the group delay is                          , 
and the change in mode delay for the actual 
fiber relative to that of the base fiber is

Calculation of Mode Delays & DMD

Because the individual modes share energy, it is convenient 
to simplify the calculation to 20 mode groups rather than 200 
individual modes using  (weight = 1 radial, = 2 skew modes) 
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Then

We note in passing that this is the modal form of an 
equation derived by Petermann for an ideal DMD,

The first equation can  be written in vector/matrix form as

Converting to Matrix format
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The bandwidth etc. for a given modal power distribution 
can then be modeled in the usual way as the sum of 
delta functions to represent the pulse:

In the DMD measurement a specific launch is scanned 
across the fiber.  At an offset x  the fractional power 
going into mode group m can be calculated and denoted 
by Cxm . Then the DMD centroid vs. offset is given by

, hence

Calculating BW and  DMD
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Worked Example
Using index profile data we estimate the index 
error δnr, the mode delays δτm, and DMD Tx

Index Error

Mode Delays

Measured Profile & 
Target Profile

DMD 
contours
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Because of the finite DMD spot size, the DMD centroid
function        is a smooth curve. To estimate a smooth 
index error δn(r) we can use a least squares approach 
forcing some smoothness in the index perturbation (but 
not the mode delays). We find     which minimizes S 
where

Here       is the predicted value of         , i.e.

Estimating  δn(r) from DMD data Tx

xT̂ xT rxr NA ˆ

xT
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Converting DMD inversion to matrix form

We can turn this least squares formulation into an easy-to-
implement matrix form by augmenting the matrix           :

......000

...2100
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...0121

...0001

−
−−

−−
=rrD

xrA

This can then be inverted 
into a final matrix equation

using singular value 
decomposition (SVD),  
which simplifies to

Nr = Gr(x+r)T’(x+r)

Nr = G rx T x
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Extensions of this approach

One extension of this approach with the full DMD data
(not just the centroid curve) is to use the centroid to get 
a first approximation to δn(r) and then calculate the full 
DMD pattern and generate iterations on δn(r) which 
gradually improve the agreement.

Another approach is to use basis functions to represent 
δn(r) and do the optimization using a limited number of 
free parameters.

The point in fiber manufacturing for estimating δn(r) is 
to make a correction to the dopant flows in subsequent 
blanks to control the index profile.
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Topic 2 -- real index errors 

In the 1GbE  MBI working group an analysis was made 
by Corning of the sensitivity of BW to launch conditions 
using a set of measured index profiles available at the 
time. The results were incorporated into the MBI 
recommendations and presented at IWCS 1998, and 
generally supported the concept of an offset launch.

The mode delays from these MBI profiles were studied 
to compare them to the Cambridge 81 fibers and 
current high res DMD information
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modeled -3dB OFL BW distribution-MBI profiles
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Corning 310profiles x 31 offsets
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Calculated BW 
from index 
profile data 
shows a log 
normal 
distribution 
(not true 
sample of fiber 
distribution)
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Annex1 –

BW distributions for MBI Field 
Test measurements &

TIA OM3 model fiber 
distribution
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1st -- Field Test Data from 1GbE MBI study

Measured OFL BW Data is on IEEE website at 

http://www.ieee802.org/3/z/mbi/index.html

Excel spreadsheet

http://www.ieee802.org/3/z/mbi/fldbnd95.xls
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MBI Field Test OFL BW on Normal Probability Scale

Measured BW 
distribution is 
lognormal – an 
inherently broad 
distribution.

Median is 
900MHz.km



IEEE 802.3aq July 2004 Portland18

TIA 300m 10GbE:  OM3 modeled OFL 

TIA modeling for 
OM3 
development 
generated a 
model fiber 
distribution from 
which estimated 
failure rates 
could be 
calculated as a 
spec was 
developed.

median 
~3GHz.km
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Annex2 – additional Mode Delays
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