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Introduction
• TIA standards development for laser optimized multimode fiber (TIA/EIA-

492AAAC) required new modeling and simulation approaches. RSoft 
participated in TIA working group on modal dependence of multimode 
fiber bandwidth since 2001 and developed tools to address TIA needs

• These tools have been validated and are now used by industry

• RSoft Design Group is participating in IEEE 802.3aq 10GBASE-LRM Task 
Force to help Ethernet community with developing new standards and to 
better understand the current industry needs and requirements

• Our objective is to use our multimode fiber simulator to address Channel 
Modeling ad-hoc discussion topics such as fiber modeling, studying 
launch conditions, time-varying effects, reproducing of and comparison 
with Cambridge model and Monte-Carlo model results.

• Here we present some results of our initial studies

• This work has been supported by a Navy SBIR contract (through Gair
Brown of the Naval Surface Warfare Center) and a NIST ATP contract 
(through the PCAD Consortium)
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Requirements for Multimode Simulation
• Model and simulate spatial characteristics of multimode fiber

– Modal and chromatic dispersion
– Differential Mode Delay (DMD)
– Mode coupling coefficients, mode power distribution (MPD)
– Polarization

• Model modal fields of multimode components. Laser output beams can be 
modeled with different mode compositions to provide single-mode, restricted-
mode, or overfilled launch with Gaussian, LG, HG, LP, donut spatial profiles, or 
any of their combinations

• Model a coupler/connector with 3D coupling into and out from fiber
– x, y, z offsets, angular offsets, plus polarization

• Model and simulate encircled flux (EF)
• Model and simulate effective modal bandwidth (EMB)
• System simulation to also flexibly and accurately model other system 

components including lasers and receivers taking transient behavior, 
nonlinearities, and noise into account

• Take temporal and modal characteristics into account for total system simulation 
performance including signal to noise ratio, BER, signal waveforms, eye 
diagrams, power penalties, etc.
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Multimode Fiber Model – Our Approach
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• Fiber refractive index profile used to accurately calculate modes and 
delays

• Index profile can be defined analytically, by numerical file, by functional 
representation, or by power-law parameter

• Helmholtz equation solved numerically by simulator

• For a given azimuthal index L, the mode solver will generate solutions for 
each radial index M.

• Mode power distribution (MPD) calculated through overlap integration
• Outputs from fiber model include delay plots, coupling coefficients for 

each mode and for Degenerate Mode Groups  
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Multimode Fiber Model – Cont’d

• Both modal and chromatic dispersion are modeled. Chromatic dispersion 
can be either specified or calculated according to formula: 
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Refractive Index Perturbations

• We consider the index profile 
with perturbations as specified in 
Cambridge model

Four types of defects are included:

• Inner core αααα {1.89, 1.97, 2.05}

• Outer core αααα {1.89, 1.97, 2.05}

• Center defect – none, tip, dip

• Core/cladding defect – none, sudden, 
exponential

Total of 81 combinations
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FDDI-grade fiber:
62.5/125 µm

n1=1.49, ∆=0.02

- supports 253 modes

and 22 degenerate mode 
groups
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Impulse Responses and Modal Bandwidth

• A schematic to study impulse 

response and MB is shown on the right

• Launch signal is 50-ps Gaussian with 

7 µm FWHM for RML or can use overfilled

launch profile calculated by fiber model

• Operational wavelength 1300 nm 

• Fiber is 300 m long with chromatic dispersion set to zero

• Coupler allows the radial and angular offset of the launch signal 

We generated a library of index profiles for 81-models for given fiber 
parameters (diameter, peak index, index step) and perturbation 
parameters. These index profiles (index1.ipf, index2.ipf,..,index81.ipf) 
are used as input files in simulator.
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Two typical index distortions

• We studied just two different perturbed index profiles out of 81, one with a 
tip in the center, and the other one with a dip.

• The first one is fiber #23 – has 
a tip, alpha change, and sudden 
edge defect

• The second one is fiber #81 - has 
a dip and exponential edge defect

Note: Fiber model numerations here are different from those used in Cambridge model
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Fiber #23 – Impulse Responses and Mode Delays

• Modal delays and impulse response at offset =0, 4, and 20 µm
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Fiber #23 – overfilled launch

• On the left – mode field for 
overfilled launch (contour and 3D 
plots)

• On the bottom – mode delays for 
overfilled launch – all modes are 
equally excited
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Fiber #23 - DMD
• DMD is calculated according to TIA/EIA-455-220 definition
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Fiber #23 – Modal Bandwidth
• Frequency response (transfer function) for 0-, 4-, 20-µm offset RML, 

and OFL launches after 300 m

Modal Bandwidths:
• RML 0-offset – 270 MHz•km

• RML 4-um offset – 130 MHz•km

• RML 20-um offset – 135 MHz•km

• OFL – 60 MHz•km

Note: We did not apply here DMD scaling to 2 ps/m as in Cambridge model
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Fiber #81 – Impulse Responses and Mode Delays

• Modal delays and impulse response at offset = 0, 4, and 20 µm
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Fiber #81 - DMD
• DMD is calculated according to TIA/EIA-455-220 definition
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Fiber #81 – Modal Bandwidth
• Frequency response (transfer function) for 0-, 4-, 20-µm offset RML, 

and OFL launches after 300 m

Modal Bandwidths:
• RML 0 offset – 600 MHz•km

• RML 4-µm offset – 170 MHz•km

• RML 20-µm offset – 290 MHz•km

• OFL – 190 MHz•km

Note: We did not apply here DMD scaling to 2 ps/m as in Cambridge model
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Eye Diagrams
• MB and DMD only provide part of the information necessary to 

determine whether link failures are likely to occur. 

• In order to assess system performance metrics such as BER and eye 
opening, one has to simulate fiber response to modulated signals.

• Input signal is Gaussian fundamental mode with 7 µm FWHM

• BER and eye diagrams for fibers #23 and #81 were studied at 
different launch offsets

Schematic used to 
study case of 1 Gb/s 
NRZ-modulated 
signal
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Eye Diagrams and BER for fiber #23

• Top 3 plots give eye diagram for fiber 
#23 at different radial offsets - 0, 4, and 
20 microns.

• Plot on the left shows simulated BER vs. 
radial offset
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Eye Diagrams and BER for fiber #81

• Top 3 plots give eye diagram for fiber #81 
at different radial offsets - 0, 4, and 20 
microns.

• Plot on the right shows BER vs. radial offset
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Summary

We demonstrated simulation results based on index profiles 
corresponding to the Cambridge model 

• Simulations can take into account time-varying channel responses

• Further simulation studies can be performed by varying system and 
component parameters to study their impact on performance:

• Chromatic dispersion

• Fiber length

• Radial/angular offset launch conditions, launched modal field, 
beam width, etc.

• Launched temporal waveform / pulse shape

• Variations/perturbations on fiber index profiles
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